| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restn0b | Structured version Visualization version GIF version | ||
| Description: Alternate version of bj-restn0 37134. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restn0b | ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → (𝑋 ↾t 𝐴) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4078 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋 ∈ 𝑉) | |
| 2 | eldifsni 4739 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋 ≠ ∅) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅)) |
| 4 | 3 | anim1i 615 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) ∧ 𝐴 ∈ 𝑊)) |
| 5 | an32 646 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) ∧ 𝐴 ∈ 𝑊) ↔ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅)) |
| 7 | bj-restn0 37134 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) | |
| 8 | 7 | imp 406 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅) → (𝑋 ↾t 𝐴) ≠ ∅) |
| 9 | 6, 8 | syl 17 | 1 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → (𝑋 ↾t 𝐴) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ∅c0 4280 {csn 4573 (class class class)co 7346 ↾t crest 17324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rest 17326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |