| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restn0b | Structured version Visualization version GIF version | ||
| Description: Alternate version of bj-restn0 37078. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restn0b | ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → (𝑋 ↾t 𝐴) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4094 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋 ∈ 𝑉) | |
| 2 | eldifsni 4754 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋 ≠ ∅) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅)) |
| 4 | 3 | anim1i 615 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) ∧ 𝐴 ∈ 𝑊)) |
| 5 | an32 646 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) ∧ 𝐴 ∈ 𝑊) ↔ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅)) |
| 7 | bj-restn0 37078 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) | |
| 8 | 7 | imp 406 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅) → (𝑋 ↾t 𝐴) ≠ ∅) |
| 9 | 6, 8 | syl 17 | 1 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → (𝑋 ↾t 𝐴) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ∅c0 4296 {csn 4589 (class class class)co 7387 ↾t crest 17383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rest 17385 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |