Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restn0b Structured version   Visualization version   GIF version

Theorem bj-restn0b 37086
Description: Alternate version of bj-restn0 37085. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restn0b ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴𝑊) → (𝑋t 𝐴) ≠ ∅)

Proof of Theorem bj-restn0b
StepHypRef Expression
1 eldifi 4097 . . . . 5 (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋𝑉)
2 eldifsni 4757 . . . . 5 (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋 ≠ ∅)
31, 2jca 511 . . . 4 (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋𝑉𝑋 ≠ ∅))
43anim1i 615 . . 3 ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴𝑊) → ((𝑋𝑉𝑋 ≠ ∅) ∧ 𝐴𝑊))
5 an32 646 . . 3 (((𝑋𝑉𝑋 ≠ ∅) ∧ 𝐴𝑊) ↔ ((𝑋𝑉𝐴𝑊) ∧ 𝑋 ≠ ∅))
64, 5sylib 218 . 2 ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴𝑊) → ((𝑋𝑉𝐴𝑊) ∧ 𝑋 ≠ ∅))
7 bj-restn0 37085 . . 3 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → (𝑋t 𝐴) ≠ ∅))
87imp 406 . 2 (((𝑋𝑉𝐴𝑊) ∧ 𝑋 ≠ ∅) → (𝑋t 𝐴) ≠ ∅)
96, 8syl 17 1 ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴𝑊) → (𝑋t 𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926  cdif 3914  c0 4299  {csn 4592  (class class class)co 7390  t crest 17390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-rest 17392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator