Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restn0b Structured version   Visualization version   GIF version

Theorem bj-restn0b 37109
Description: Alternate version of bj-restn0 37108. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restn0b ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴𝑊) → (𝑋t 𝐴) ≠ ∅)

Proof of Theorem bj-restn0b
StepHypRef Expression
1 eldifi 4106 . . . . 5 (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋𝑉)
2 eldifsni 4766 . . . . 5 (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋 ≠ ∅)
31, 2jca 511 . . . 4 (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋𝑉𝑋 ≠ ∅))
43anim1i 615 . . 3 ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴𝑊) → ((𝑋𝑉𝑋 ≠ ∅) ∧ 𝐴𝑊))
5 an32 646 . . 3 (((𝑋𝑉𝑋 ≠ ∅) ∧ 𝐴𝑊) ↔ ((𝑋𝑉𝐴𝑊) ∧ 𝑋 ≠ ∅))
64, 5sylib 218 . 2 ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴𝑊) → ((𝑋𝑉𝐴𝑊) ∧ 𝑋 ≠ ∅))
7 bj-restn0 37108 . . 3 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → (𝑋t 𝐴) ≠ ∅))
87imp 406 . 2 (((𝑋𝑉𝐴𝑊) ∧ 𝑋 ≠ ∅) → (𝑋t 𝐴) ≠ ∅)
96, 8syl 17 1 ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴𝑊) → (𝑋t 𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2932  cdif 3923  c0 4308  {csn 4601  (class class class)co 7405  t crest 17434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rest 17436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator