| Step | Hyp | Ref
| Expression |
| 1 | | pwexg 5348 |
. . . 4
⊢ (𝑌 ∈ 𝑉 → 𝒫 𝑌 ∈ V) |
| 2 | | elrest 17441 |
. . . 4
⊢
((𝒫 𝑌 ∈
V ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝑌 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦 ∩ 𝐴))) |
| 3 | 1, 2 | sylan 580 |
. . 3
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝑌 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦 ∩ 𝐴))) |
| 4 | | velpw 4580 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 𝑌 ↔ 𝑦 ⊆ 𝑌) |
| 5 | 4 | anbi1i 624 |
. . . . . 6
⊢ ((𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ (𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 6 | 5 | exbii 1848 |
. . . . 5
⊢
(∃𝑦(𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ ∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 7 | | sstr2 3965 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑦 → (𝑦 ⊆ 𝑌 → 𝑥 ⊆ 𝑌)) |
| 8 | 7 | com12 32 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝑌 → (𝑥 ⊆ 𝑦 → 𝑥 ⊆ 𝑌)) |
| 9 | | inss1 4212 |
. . . . . . . . . 10
⊢ (𝑦 ∩ 𝐴) ⊆ 𝑦 |
| 10 | | sseq1 3984 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝑦 ↔ (𝑦 ∩ 𝐴) ⊆ 𝑦)) |
| 11 | 9, 10 | mpbiri 258 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝑦) |
| 12 | 8, 11 | impel 505 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) → 𝑥 ⊆ 𝑌) |
| 13 | | inss2 4213 |
. . . . . . . . . 10
⊢ (𝑦 ∩ 𝐴) ⊆ 𝐴 |
| 14 | | sseq1 3984 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝐴 ↔ (𝑦 ∩ 𝐴) ⊆ 𝐴)) |
| 15 | 13, 14 | mpbiri 258 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 16 | 15 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) → 𝑥 ⊆ 𝐴) |
| 17 | 12, 16 | ssind 4216 |
. . . . . . 7
⊢ ((𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) → 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 18 | 17 | exlimiv 1930 |
. . . . . 6
⊢
(∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) → 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 19 | | inss1 4212 |
. . . . . . . 8
⊢ (𝑌 ∩ 𝐴) ⊆ 𝑌 |
| 20 | | sstr2 3965 |
. . . . . . . 8
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → ((𝑌 ∩ 𝐴) ⊆ 𝑌 → 𝑥 ⊆ 𝑌)) |
| 21 | 19, 20 | mpi 20 |
. . . . . . 7
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → 𝑥 ⊆ 𝑌) |
| 22 | | inss2 4213 |
. . . . . . . 8
⊢ (𝑌 ∩ 𝐴) ⊆ 𝐴 |
| 23 | | sstr2 3965 |
. . . . . . . 8
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → ((𝑌 ∩ 𝐴) ⊆ 𝐴 → 𝑥 ⊆ 𝐴)) |
| 24 | 22, 23 | mpi 20 |
. . . . . . 7
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 25 | | ssidd 3982 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝑥) |
| 26 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐴) |
| 27 | 25, 26 | ssind 4216 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝐴 → 𝑥 ⊆ (𝑥 ∩ 𝐴)) |
| 28 | | inss1 4212 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
| 29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝐴) ⊆ 𝑥) |
| 30 | 27, 29 | eqssd 3976 |
. . . . . . . 8
⊢ (𝑥 ⊆ 𝐴 → 𝑥 = (𝑥 ∩ 𝐴)) |
| 31 | | vex 3463 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 32 | | sseq1 3984 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑌 ↔ 𝑥 ⊆ 𝑌)) |
| 33 | | ineq1 4188 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
| 34 | 33 | eqeq2d 2746 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = (𝑥 ∩ 𝐴))) |
| 35 | 32, 34 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ (𝑥 ⊆ 𝑌 ∧ 𝑥 = (𝑥 ∩ 𝐴)))) |
| 36 | 31, 35 | spcev 3585 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑌 ∧ 𝑥 = (𝑥 ∩ 𝐴)) → ∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 37 | 30, 36 | sylan2 593 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝑌 ∧ 𝑥 ⊆ 𝐴) → ∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 38 | 21, 24, 37 | syl2anc 584 |
. . . . . 6
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → ∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 39 | 18, 38 | impbii 209 |
. . . . 5
⊢
(∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 40 | 6, 39 | bitri 275 |
. . . 4
⊢
(∃𝑦(𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 41 | | df-rex 3061 |
. . . 4
⊢
(∃𝑦 ∈
𝒫 𝑌𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 42 | | velpw 4580 |
. . . 4
⊢ (𝑥 ∈ 𝒫 (𝑌 ∩ 𝐴) ↔ 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 43 | 40, 41, 42 | 3bitr4i 303 |
. . 3
⊢
(∃𝑦 ∈
𝒫 𝑌𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑌 ∩ 𝐴)) |
| 44 | 3, 43 | bitrdi 287 |
. 2
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝑌 ↾t 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑌 ∩ 𝐴))) |
| 45 | 44 | eqrdv 2733 |
1
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝒫 𝑌 ↾t 𝐴) = 𝒫 (𝑌 ∩ 𝐴)) |