Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restpw Structured version   Visualization version   GIF version

Theorem bj-restpw 35263
Description: The elementwise intersection on a powerset is the powerset of the intersection. This allows to prove for instance that the topology induced on a subset by the discrete topology is the discrete topology on that subset. See also restdis 22329 (which uses distop 22145 and restopn2 22328). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restpw ((𝑌𝑉𝐴𝑊) → (𝒫 𝑌t 𝐴) = 𝒫 (𝑌𝐴))

Proof of Theorem bj-restpw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5301 . . . 4 (𝑌𝑉 → 𝒫 𝑌 ∈ V)
2 elrest 17138 . . . 4 ((𝒫 𝑌 ∈ V ∧ 𝐴𝑊) → (𝑥 ∈ (𝒫 𝑌t 𝐴) ↔ ∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)))
31, 2sylan 580 . . 3 ((𝑌𝑉𝐴𝑊) → (𝑥 ∈ (𝒫 𝑌t 𝐴) ↔ ∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)))
4 velpw 4538 . . . . . . 7 (𝑦 ∈ 𝒫 𝑌𝑦𝑌)
54anbi1i 624 . . . . . 6 ((𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)) ↔ (𝑦𝑌𝑥 = (𝑦𝐴)))
65exbii 1850 . . . . 5 (∃𝑦(𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)) ↔ ∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)))
7 sstr2 3928 . . . . . . . . . 10 (𝑥𝑦 → (𝑦𝑌𝑥𝑌))
87com12 32 . . . . . . . . 9 (𝑦𝑌 → (𝑥𝑦𝑥𝑌))
9 inss1 4162 . . . . . . . . . 10 (𝑦𝐴) ⊆ 𝑦
10 sseq1 3946 . . . . . . . . . 10 (𝑥 = (𝑦𝐴) → (𝑥𝑦 ↔ (𝑦𝐴) ⊆ 𝑦))
119, 10mpbiri 257 . . . . . . . . 9 (𝑥 = (𝑦𝐴) → 𝑥𝑦)
128, 11impel 506 . . . . . . . 8 ((𝑦𝑌𝑥 = (𝑦𝐴)) → 𝑥𝑌)
13 inss2 4163 . . . . . . . . . 10 (𝑦𝐴) ⊆ 𝐴
14 sseq1 3946 . . . . . . . . . 10 (𝑥 = (𝑦𝐴) → (𝑥𝐴 ↔ (𝑦𝐴) ⊆ 𝐴))
1513, 14mpbiri 257 . . . . . . . . 9 (𝑥 = (𝑦𝐴) → 𝑥𝐴)
1615adantl 482 . . . . . . . 8 ((𝑦𝑌𝑥 = (𝑦𝐴)) → 𝑥𝐴)
1712, 16ssind 4166 . . . . . . 7 ((𝑦𝑌𝑥 = (𝑦𝐴)) → 𝑥 ⊆ (𝑌𝐴))
1817exlimiv 1933 . . . . . 6 (∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)) → 𝑥 ⊆ (𝑌𝐴))
19 inss1 4162 . . . . . . . 8 (𝑌𝐴) ⊆ 𝑌
20 sstr2 3928 . . . . . . . 8 (𝑥 ⊆ (𝑌𝐴) → ((𝑌𝐴) ⊆ 𝑌𝑥𝑌))
2119, 20mpi 20 . . . . . . 7 (𝑥 ⊆ (𝑌𝐴) → 𝑥𝑌)
22 inss2 4163 . . . . . . . 8 (𝑌𝐴) ⊆ 𝐴
23 sstr2 3928 . . . . . . . 8 (𝑥 ⊆ (𝑌𝐴) → ((𝑌𝐴) ⊆ 𝐴𝑥𝐴))
2422, 23mpi 20 . . . . . . 7 (𝑥 ⊆ (𝑌𝐴) → 𝑥𝐴)
25 ssidd 3944 . . . . . . . . . 10 (𝑥𝐴𝑥𝑥)
26 id 22 . . . . . . . . . 10 (𝑥𝐴𝑥𝐴)
2725, 26ssind 4166 . . . . . . . . 9 (𝑥𝐴𝑥 ⊆ (𝑥𝐴))
28 inss1 4162 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝑥
2928a1i 11 . . . . . . . . 9 (𝑥𝐴 → (𝑥𝐴) ⊆ 𝑥)
3027, 29eqssd 3938 . . . . . . . 8 (𝑥𝐴𝑥 = (𝑥𝐴))
31 vex 3436 . . . . . . . . 9 𝑥 ∈ V
32 sseq1 3946 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦𝑌𝑥𝑌))
33 ineq1 4139 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐴) = (𝑥𝐴))
3433eqeq2d 2749 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑥 = (𝑦𝐴) ↔ 𝑥 = (𝑥𝐴)))
3532, 34anbi12d 631 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑦𝑌𝑥 = (𝑦𝐴)) ↔ (𝑥𝑌𝑥 = (𝑥𝐴))))
3631, 35spcev 3545 . . . . . . . 8 ((𝑥𝑌𝑥 = (𝑥𝐴)) → ∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)))
3730, 36sylan2 593 . . . . . . 7 ((𝑥𝑌𝑥𝐴) → ∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)))
3821, 24, 37syl2anc 584 . . . . . 6 (𝑥 ⊆ (𝑌𝐴) → ∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)))
3918, 38impbii 208 . . . . 5 (∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)) ↔ 𝑥 ⊆ (𝑌𝐴))
406, 39bitri 274 . . . 4 (∃𝑦(𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)) ↔ 𝑥 ⊆ (𝑌𝐴))
41 df-rex 3070 . . . 4 (∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴) ↔ ∃𝑦(𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)))
42 velpw 4538 . . . 4 (𝑥 ∈ 𝒫 (𝑌𝐴) ↔ 𝑥 ⊆ (𝑌𝐴))
4340, 41, 423bitr4i 303 . . 3 (∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ 𝒫 (𝑌𝐴))
443, 43bitrdi 287 . 2 ((𝑌𝑉𝐴𝑊) → (𝑥 ∈ (𝒫 𝑌t 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑌𝐴)))
4544eqrdv 2736 1 ((𝑌𝑉𝐴𝑊) → (𝒫 𝑌t 𝐴) = 𝒫 (𝑌𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533  (class class class)co 7275  t crest 17131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rest 17133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator