MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blelrnps Structured version   Visualization version   GIF version

Theorem blelrnps 24350
Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blelrnps ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ ran (ballβ€˜π·))

Proof of Theorem blelrnps
StepHypRef Expression
1 blfps 24340 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (ballβ€˜π·):(𝑋 Γ— ℝ*)βŸΆπ’« 𝑋)
21ffnd 6728 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (ballβ€˜π·) Fn (𝑋 Γ— ℝ*))
3 fnovrn 7603 . 2 (((ballβ€˜π·) Fn (𝑋 Γ— ℝ*) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ ran (ballβ€˜π·))
42, 3syl3an1 1160 1 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ ran (ballβ€˜π·))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   ∈ wcel 2098  π’« cpw 4606   Γ— cxp 5680  ran crn 5683   Fn wfn 6548  β€˜cfv 6553  (class class class)co 7426  β„*cxr 11287  PsMetcpsmet 21277  ballcbl 21280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-map 8855  df-xr 11292  df-psmet 21285  df-bl 21288
This theorem is referenced by:  unirnblps  24353  blssexps  24360
  Copyright terms: Public domain W3C validator