MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blelrnps Structured version   Visualization version   GIF version

Theorem blelrnps 23162
Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blelrnps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))

Proof of Theorem blelrnps
StepHypRef Expression
1 blfps 23152 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
21ffnd 6499 . 2 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) Fn (𝑋 × ℝ*))
3 fnovrn 7333 . 2 (((ball‘𝐷) Fn (𝑋 × ℝ*) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))
42, 3syl3an1 1164 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088  wcel 2113  𝒫 cpw 4485   × cxp 5517  ran crn 5520   Fn wfn 6328  cfv 6333  (class class class)co 7164  *cxr 10745  PsMetcpsmet 20194  ballcbl 20197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-1st 7707  df-2nd 7708  df-map 8432  df-xr 10750  df-psmet 20202  df-bl 20205
This theorem is referenced by:  unirnblps  23165  blssexps  23172
  Copyright terms: Public domain W3C validator