MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blelrn Structured version   Visualization version   GIF version

Theorem blelrn 23551
Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blelrn ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))

Proof of Theorem blelrn
StepHypRef Expression
1 blf 23541 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
21ffnd 6597 . 2 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) Fn (𝑋 × ℝ*))
3 fnovrn 7438 . 2 (((ball‘𝐷) Fn (𝑋 × ℝ*) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))
42, 3syl3an1 1161 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2109  𝒫 cpw 4538   × cxp 5586  ran crn 5589   Fn wfn 6425  cfv 6430  (class class class)co 7268  *cxr 10992  ∞Metcxmet 20563  ballcbl 20565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-map 8591  df-xr 10997  df-psmet 20570  df-xmet 20571  df-bl 20573
This theorem is referenced by:  unirnbl  23554  blssex  23561  blopn  23637  blcld  23642  metss  23645  metcnp3  23677  dscopn  23710  ioo2blex  23938
  Copyright terms: Public domain W3C validator