MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssexps Structured version   Visualization version   GIF version

Theorem blssexps 23033
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blssexps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑟,𝐴   𝐷,𝑟,𝑥   𝑃,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem blssexps
StepHypRef Expression
1 blssps 23031 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃𝑥) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥)
2 sstr 3923 . . . . . . . . 9 (((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥𝑥𝐴) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)
32expcom 417 . . . . . . . 8 (𝑥𝐴 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
43reximdv 3232 . . . . . . 7 (𝑥𝐴 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
51, 4syl5com 31 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃𝑥) → (𝑥𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
653expa 1115 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) ∧ 𝑃𝑥) → (𝑥𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
76expimpd 457 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
87adantlr 714 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
98rexlimdva 3243 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
10 simpll 766 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝐷 ∈ (PsMet‘𝑋))
11 simplr 768 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃𝑋)
12 rpxr 12386 . . . . . 6 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
1312ad2antrl 727 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ*)
14 blelrnps 23023 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷))
1510, 11, 13, 14syl3anc 1368 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷))
16 simprl 770 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ+)
17 blcntrps 23019 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
1810, 11, 16, 17syl3anc 1368 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
19 simprr 772 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)
20 eleq2 2878 . . . . . 6 (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑃𝑥𝑃 ∈ (𝑃(ball‘𝐷)𝑟)))
21 sseq1 3940 . . . . . 6 (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑥𝐴 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
2220, 21anbi12d 633 . . . . 5 (𝑥 = (𝑃(ball‘𝐷)𝑟) → ((𝑃𝑥𝑥𝐴) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)))
2322rspcev 3571 . . . 4 (((𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷) ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
2415, 18, 19, 23syl12anc 835 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
2524rexlimdvaa 3244 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴 → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴)))
269, 25impbid 215 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  wss 3881  ran crn 5520  cfv 6324  (class class class)co 7135  *cxr 10663  +crp 12377  PsMetcpsmet 20075  ballcbl 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-psmet 20083  df-bl 20086
This theorem is referenced by:  metustbl  23173  psmetutop  23174
  Copyright terms: Public domain W3C validator