MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssexps Structured version   Visualization version   GIF version

Theorem blssexps 23039
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blssexps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑟,𝐴   𝐷,𝑟,𝑥   𝑃,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem blssexps
StepHypRef Expression
1 blssps 23037 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃𝑥) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥)
2 sstr 3961 . . . . . . . . 9 (((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥𝑥𝐴) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)
32expcom 417 . . . . . . . 8 (𝑥𝐴 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
43reximdv 3265 . . . . . . 7 (𝑥𝐴 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
51, 4syl5com 31 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃𝑥) → (𝑥𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
653expa 1115 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) ∧ 𝑃𝑥) → (𝑥𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
76expimpd 457 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
87adantlr 714 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
98rexlimdva 3276 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
10 simpll 766 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝐷 ∈ (PsMet‘𝑋))
11 simplr 768 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃𝑋)
12 rpxr 12395 . . . . . 6 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
1312ad2antrl 727 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ*)
14 blelrnps 23029 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷))
1510, 11, 13, 14syl3anc 1368 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷))
16 simprl 770 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ+)
17 blcntrps 23025 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
1810, 11, 16, 17syl3anc 1368 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
19 simprr 772 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)
20 eleq2 2904 . . . . . 6 (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑃𝑥𝑃 ∈ (𝑃(ball‘𝐷)𝑟)))
21 sseq1 3978 . . . . . 6 (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑥𝐴 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
2220, 21anbi12d 633 . . . . 5 (𝑥 = (𝑃(ball‘𝐷)𝑟) → ((𝑃𝑥𝑥𝐴) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)))
2322rspcev 3609 . . . 4 (((𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷) ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
2415, 18, 19, 23syl12anc 835 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
2524rexlimdvaa 3277 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴 → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴)))
269, 25impbid 215 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wrex 3134  wss 3919  ran crn 5543  cfv 6343  (class class class)co 7149  *cxr 10672  +crp 12386  PsMetcpsmet 20131  ballcbl 20134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-psmet 20139  df-bl 20142
This theorem is referenced by:  metustbl  23179  psmetutop  23180
  Copyright terms: Public domain W3C validator