MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnblps Structured version   Visualization version   GIF version

Theorem unirnblps 22946
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
unirnblps (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)

Proof of Theorem unirnblps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 blfps 22933 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
21frnd 6517 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) ⊆ 𝒫 𝑋)
3 sspwuni 5018 . . 3 (ran (ball‘𝐷) ⊆ 𝒫 𝑋 ran (ball‘𝐷) ⊆ 𝑋)
42, 3sylib 219 . 2 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) ⊆ 𝑋)
5 1rp 12386 . . . 4 1 ∈ ℝ+
6 blcntrps 22939 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
75, 6mp3an3 1443 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
8 1xr 10692 . . . 4 1 ∈ ℝ*
9 blelrnps 22943 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷))
108, 9mp3an3 1443 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷))
11 elunii 4841 . . 3 ((𝑥 ∈ (𝑥(ball‘𝐷)1) ∧ (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) → 𝑥 ran (ball‘𝐷))
127, 10, 11syl2anc 584 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → 𝑥 ran (ball‘𝐷))
134, 12eqelssd 3991 1 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wss 3939  𝒫 cpw 4541   cuni 4836   × cxp 5551  ran crn 5554  cfv 6351  (class class class)co 7151  1c1 10530  *cxr 10666  +crp 12382  PsMetcpsmet 20447  ballcbl 20450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-rp 12383  df-psmet 20455  df-bl 20458
This theorem is referenced by:  psmetutop  23094
  Copyright terms: Public domain W3C validator