HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bracl Structured version   Visualization version   GIF version

Theorem bracl 31885
Description: Closure of the bra function. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
bracl ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)

Proof of Theorem bracl
StepHypRef Expression
1 brafn 31883 . 2 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
21ffvelcdmda 7100 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  cfv 6556  cc 11158  chba 30855  bracbr 30892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pr 5435  ax-hilex 30935  ax-hfi 31015
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-ov 7429  df-bra 31786
This theorem is referenced by:  kbass2  32053  kbass3  32054  kbass4  32055  kbass6  32057
  Copyright terms: Public domain W3C validator