HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass4 Structured version   Visualization version   GIF version

Theorem kbass4 32120
Description: Dirac bra-ket associative law 𝐴𝐵⟩⟨𝐶𝐷⟩ = ⟨𝐴 ∣ ( ∣ 𝐵⟩⟨𝐶𝐷⟩). (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) · 𝐵)))

Proof of Theorem kbass4
StepHypRef Expression
1 bracl 31950 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
2 bracl 31950 . . 3 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((bra‘𝐶)‘𝐷) ∈ ℂ)
3 mulcom 11103 . . 3 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ ((bra‘𝐶)‘𝐷) ∈ ℂ) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵)))
41, 2, 3syl2an 596 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵)))
5 bralnfn 31949 . . . 4 (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)
65ad2antrr 726 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (bra‘𝐴) ∈ LinFn)
72adantl 481 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((bra‘𝐶)‘𝐷) ∈ ℂ)
8 simplr 768 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐵 ∈ ℋ)
9 lnfnmul 32049 . . 3 (((bra‘𝐴) ∈ LinFn ∧ ((bra‘𝐶)‘𝐷) ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) · 𝐵)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵)))
106, 7, 8, 9syl3anc 1373 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) · 𝐵)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵)))
114, 10eqtr4d 2771 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  cc 11015   · cmul 11022  chba 30920   · csm 30922  LinFnclf 30955  bracbr 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-hilex 31000  ax-hfvadd 31001  ax-hv0cl 31004  ax-hvaddid 31005  ax-hfvmul 31006  ax-hvmulid 31007  ax-hfi 31080  ax-his2 31084  ax-his3 31085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-sub 11357  df-lnfn 31849  df-bra 31851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator