| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > kbass4 | Structured version Visualization version GIF version | ||
| Description: Dirac bra-ket associative law 〈𝐴 ∣ 𝐵〉〈𝐶 ∣ 𝐷〉 = 〈𝐴 ∣ ( ∣ 𝐵〉〈𝐶 ∣ 𝐷〉). (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| kbass4 | ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bracl 31950 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ) | |
| 2 | bracl 31950 | . . 3 ⊢ ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((bra‘𝐶)‘𝐷) ∈ ℂ) | |
| 3 | mulcom 11103 | . . 3 ⊢ ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ ((bra‘𝐶)‘𝐷) ∈ ℂ) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵))) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵))) |
| 5 | bralnfn 31949 | . . . 4 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) | |
| 6 | 5 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (bra‘𝐴) ∈ LinFn) |
| 7 | 2 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((bra‘𝐶)‘𝐷) ∈ ℂ) |
| 8 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐵 ∈ ℋ) | |
| 9 | lnfnmul 32049 | . . 3 ⊢ (((bra‘𝐴) ∈ LinFn ∧ ((bra‘𝐶)‘𝐷) ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵))) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵))) |
| 11 | 4, 10 | eqtr4d 2771 | 1 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 · cmul 11022 ℋchba 30920 ·ℎ csm 30922 LinFnclf 30955 bracbr 30957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-hilex 31000 ax-hfvadd 31001 ax-hv0cl 31004 ax-hvaddid 31005 ax-hfvmul 31006 ax-hvmulid 31007 ax-hfi 31080 ax-his2 31084 ax-his3 31085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 df-lnfn 31849 df-bra 31851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |