![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbass4 | Structured version Visualization version GIF version |
Description: Dirac bra-ket associative law 〈𝐴 ∣ 𝐵〉 〈𝐶 ∣ 𝐷〉 = 〈𝐴 ∣ ( ∣ 𝐵〉 〈𝐶 ∣ 𝐷〉). (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbass4 | ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bracl 29522 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ) | |
2 | bracl 29522 | . . 3 ⊢ ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((bra‘𝐶)‘𝐷) ∈ ℂ) | |
3 | mulcom 10419 | . . 3 ⊢ ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ ((bra‘𝐶)‘𝐷) ∈ ℂ) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵))) | |
4 | 1, 2, 3 | syl2an 587 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵))) |
5 | bralnfn 29521 | . . . 4 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) | |
6 | 5 | ad2antrr 714 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (bra‘𝐴) ∈ LinFn) |
7 | 2 | adantl 474 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((bra‘𝐶)‘𝐷) ∈ ℂ) |
8 | simplr 757 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐵 ∈ ℋ) | |
9 | lnfnmul 29621 | . . 3 ⊢ (((bra‘𝐴) ∈ LinFn ∧ ((bra‘𝐶)‘𝐷) ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵))) | |
10 | 6, 7, 8, 9 | syl3anc 1352 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵)) = (((bra‘𝐶)‘𝐷) · ((bra‘𝐴)‘𝐵))) |
11 | 4, 10 | eqtr4d 2810 | 1 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ‘cfv 6185 (class class class)co 6974 ℂcc 10331 · cmul 10338 ℋchba 28490 ·ℎ csm 28492 LinFnclf 28525 bracbr 28527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-hilex 28570 ax-hfvadd 28571 ax-hv0cl 28574 ax-hvaddid 28575 ax-hfvmul 28576 ax-hvmulid 28577 ax-hfi 28650 ax-his2 28654 ax-his3 28655 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-ltxr 10477 df-sub 10670 df-lnfn 29421 df-bra 29423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |