HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass4 Structured version   Visualization version   GIF version

Theorem kbass4 31103
Description: Dirac bra-ket associative law ⟨𝐴 ∣ 𝐡⟩⟨𝐢 ∣ 𝐷⟩ = ⟨𝐴 ∣ ( ∣ 𝐡⟩⟨𝐢 ∣ 𝐷⟩). (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass4 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ (((braβ€˜π΄)β€˜π΅) Β· ((braβ€˜πΆ)β€˜π·)) = ((braβ€˜π΄)β€˜(((braβ€˜πΆ)β€˜π·) Β·β„Ž 𝐡)))

Proof of Theorem kbass4
StepHypRef Expression
1 bracl 30933 . . 3 ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜π΅) ∈ β„‚)
2 bracl 30933 . . 3 ((𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹) β†’ ((braβ€˜πΆ)β€˜π·) ∈ β„‚)
3 mulcom 11142 . . 3 ((((braβ€˜π΄)β€˜π΅) ∈ β„‚ ∧ ((braβ€˜πΆ)β€˜π·) ∈ β„‚) β†’ (((braβ€˜π΄)β€˜π΅) Β· ((braβ€˜πΆ)β€˜π·)) = (((braβ€˜πΆ)β€˜π·) Β· ((braβ€˜π΄)β€˜π΅)))
41, 2, 3syl2an 597 . 2 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ (((braβ€˜π΄)β€˜π΅) Β· ((braβ€˜πΆ)β€˜π·)) = (((braβ€˜πΆ)β€˜π·) Β· ((braβ€˜π΄)β€˜π΅)))
5 bralnfn 30932 . . . 4 (𝐴 ∈ β„‹ β†’ (braβ€˜π΄) ∈ LinFn)
65ad2antrr 725 . . 3 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ (braβ€˜π΄) ∈ LinFn)
72adantl 483 . . 3 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ ((braβ€˜πΆ)β€˜π·) ∈ β„‚)
8 simplr 768 . . 3 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ 𝐡 ∈ β„‹)
9 lnfnmul 31032 . . 3 (((braβ€˜π΄) ∈ LinFn ∧ ((braβ€˜πΆ)β€˜π·) ∈ β„‚ ∧ 𝐡 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜(((braβ€˜πΆ)β€˜π·) Β·β„Ž 𝐡)) = (((braβ€˜πΆ)β€˜π·) Β· ((braβ€˜π΄)β€˜π΅)))
106, 7, 8, 9syl3anc 1372 . 2 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ ((braβ€˜π΄)β€˜(((braβ€˜πΆ)β€˜π·) Β·β„Ž 𝐡)) = (((braβ€˜πΆ)β€˜π·) Β· ((braβ€˜π΄)β€˜π΅)))
114, 10eqtr4d 2776 1 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ (((braβ€˜π΄)β€˜π΅) Β· ((braβ€˜πΆ)β€˜π·)) = ((braβ€˜π΄)β€˜(((braβ€˜πΆ)β€˜π·) Β·β„Ž 𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  β€˜cfv 6497  (class class class)co 7358  β„‚cc 11054   Β· cmul 11061   β„‹chba 29903   Β·β„Ž csm 29905  LinFnclf 29938  bracbr 29940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-hilex 29983  ax-hfvadd 29984  ax-hv0cl 29987  ax-hvaddid 29988  ax-hfvmul 29989  ax-hvmulid 29990  ax-hfi 30063  ax-his2 30067  ax-his3 30068
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-map 8770  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-ltxr 11199  df-sub 11392  df-lnfn 30832  df-bra 30834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator