![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbass3 | Structured version Visualization version GIF version |
Description: Dirac bra-ket associative law β¨π΄ β£ π΅β©β¨πΆ β£ π·β© = (β¨π΄ β£ π΅β©β¨πΆ β£ ) β£ π·β©. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbass3 | β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β (((braβπ΄)βπ΅) Β· ((braβπΆ)βπ·)) = ((((braβπ΄)βπ΅) Β·fn (braβπΆ))βπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bracl 31202 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((braβπ΄)βπ΅) β β) | |
2 | 1 | adantr 482 | . . 3 β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β ((braβπ΄)βπ΅) β β) |
3 | brafn 31200 | . . . 4 β’ (πΆ β β β (braβπΆ): ββΆβ) | |
4 | 3 | ad2antrl 727 | . . 3 β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β (braβπΆ): ββΆβ) |
5 | simprr 772 | . . 3 β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β π· β β) | |
6 | hfmval 30997 | . . 3 β’ ((((braβπ΄)βπ΅) β β β§ (braβπΆ): ββΆβ β§ π· β β) β ((((braβπ΄)βπ΅) Β·fn (braβπΆ))βπ·) = (((braβπ΄)βπ΅) Β· ((braβπΆ)βπ·))) | |
7 | 2, 4, 5, 6 | syl3anc 1372 | . 2 β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β ((((braβπ΄)βπ΅) Β·fn (braβπΆ))βπ·) = (((braβπ΄)βπ΅) Β· ((braβπΆ)βπ·))) |
8 | 7 | eqcomd 2739 | 1 β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β (((braβπ΄)βπ΅) Β· ((braβπΆ)βπ·)) = ((((braβπ΄)βπ΅) Β·fn (braβπΆ))βπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcc 11108 Β· cmul 11115 βchba 30172 Β·fn chft 30195 bracbr 30209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-hilex 30252 ax-hfi 30332 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-hfmul 30987 df-bra 31103 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |