HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass3 Structured version   Visualization version   GIF version

Theorem kbass3 31371
Description: Dirac bra-ket associative law ⟨𝐴 ∣ 𝐡⟩⟨𝐢 ∣ 𝐷⟩ = (⟨𝐴 ∣ 𝐡⟩⟨𝐢 ∣ ) ∣ 𝐷⟩. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass3 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ (((braβ€˜π΄)β€˜π΅) Β· ((braβ€˜πΆ)β€˜π·)) = ((((braβ€˜π΄)β€˜π΅) Β·fn (braβ€˜πΆ))β€˜π·))

Proof of Theorem kbass3
StepHypRef Expression
1 bracl 31202 . . . 4 ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜π΅) ∈ β„‚)
21adantr 482 . . 3 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ ((braβ€˜π΄)β€˜π΅) ∈ β„‚)
3 brafn 31200 . . . 4 (𝐢 ∈ β„‹ β†’ (braβ€˜πΆ): β„‹βŸΆβ„‚)
43ad2antrl 727 . . 3 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ (braβ€˜πΆ): β„‹βŸΆβ„‚)
5 simprr 772 . . 3 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ 𝐷 ∈ β„‹)
6 hfmval 30997 . . 3 ((((braβ€˜π΄)β€˜π΅) ∈ β„‚ ∧ (braβ€˜πΆ): β„‹βŸΆβ„‚ ∧ 𝐷 ∈ β„‹) β†’ ((((braβ€˜π΄)β€˜π΅) Β·fn (braβ€˜πΆ))β€˜π·) = (((braβ€˜π΄)β€˜π΅) Β· ((braβ€˜πΆ)β€˜π·)))
72, 4, 5, 6syl3anc 1372 . 2 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ ((((braβ€˜π΄)β€˜π΅) Β·fn (braβ€˜πΆ))β€˜π·) = (((braβ€˜π΄)β€˜π΅) Β· ((braβ€˜πΆ)β€˜π·)))
87eqcomd 2739 1 (((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) ∧ (𝐢 ∈ β„‹ ∧ 𝐷 ∈ β„‹)) β†’ (((braβ€˜π΄)β€˜π΅) Β· ((braβ€˜πΆ)β€˜π·)) = ((((braβ€˜π΄)β€˜π΅) Β·fn (braβ€˜πΆ))β€˜π·))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108   Β· cmul 11115   β„‹chba 30172   Β·fn chft 30195  bracbr 30209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-hilex 30252  ax-hfi 30332
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-hfmul 30987  df-bra 31103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator