HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass3 Structured version   Visualization version   GIF version

Theorem kbass3 32119
Description: Dirac bra-ket associative law 𝐴𝐵⟩⟨𝐶𝐷⟩ = (⟨𝐴𝐵⟩⟨𝐶 ∣ ) ∣ 𝐷. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝐷))

Proof of Theorem kbass3
StepHypRef Expression
1 bracl 31950 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
21adantr 480 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
3 brafn 31948 . . . 4 (𝐶 ∈ ℋ → (bra‘𝐶): ℋ⟶ℂ)
43ad2antrl 728 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (bra‘𝐶): ℋ⟶ℂ)
5 simprr 772 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐷 ∈ ℋ)
6 hfmval 31745 . . 3 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ ∧ 𝐷 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝐷) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)))
72, 4, 5, 6syl3anc 1373 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝐷) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)))
87eqcomd 2739 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wf 6485  cfv 6489  (class class class)co 7355  cc 11015   · cmul 11022  chba 30920   ·fn chft 30943  bracbr 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-hilex 31000  ax-hfi 31080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-hfmul 31735  df-bra 31851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator