HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bralnfn Structured version   Visualization version   GIF version

Theorem bralnfn 30029
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
bralnfn (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)

Proof of Theorem bralnfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brafn 30028 . 2 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
2 simpll 767 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ)
3 hvmulcl 29094 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
43ad2ant2lr 748 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 · 𝑦) ∈ ℋ)
5 simprr 773 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ)
6 braadd 30026 . . . . . 6 ((𝐴 ∈ ℋ ∧ (𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)))
72, 4, 5, 6syl3anc 1373 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)))
8 bramul 30027 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
983expa 1120 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
109adantrr 717 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
1110oveq1d 7228 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
127, 11eqtrd 2777 . . . 4 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
1312ralrimivva 3112 . . 3 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
1413ralrimiva 3105 . 2 (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
15 ellnfn 29964 . 2 ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))))
161, 14, 15sylanbrc 586 1 (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wf 6376  cfv 6380  (class class class)co 7213  cc 10727   + caddc 10732   · cmul 10734  chba 29000   + cva 29001   · csm 29002  LinFnclf 29035  bracbr 29037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-hilex 29080  ax-hfvadd 29081  ax-hfvmul 29086  ax-hfi 29160  ax-his2 29164  ax-his3 29165
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-lnfn 29929  df-bra 29931
This theorem is referenced by:  rnbra  30188  kbass4  30200
  Copyright terms: Public domain W3C validator