![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bralnfn | Structured version Visualization version GIF version |
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bralnfn | ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brafn 29520 | . 2 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) | |
2 | simpll 755 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ) | |
3 | hvmulcl 28584 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
4 | 3 | ad2ant2lr 736 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 ·ℎ 𝑦) ∈ ℋ) |
5 | simprr 761 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ) | |
6 | braadd 29518 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ (𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) | |
7 | 2, 4, 5, 6 | syl3anc 1352 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) |
8 | bramul 29519 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) | |
9 | 8 | 3expa 1099 | . . . . . . 7 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
10 | 9 | adantrr 705 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
11 | 10 | oveq1d 6989 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
12 | 7, 11 | eqtrd 2807 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
13 | 12 | ralrimivva 3134 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
14 | 13 | ralrimiva 3125 | . 2 ⊢ (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
15 | ellnfn 29456 | . 2 ⊢ ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))) | |
16 | 1, 14, 15 | sylanbrc 575 | 1 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3081 ⟶wf 6181 ‘cfv 6185 (class class class)co 6974 ℂcc 10331 + caddc 10336 · cmul 10338 ℋchba 28490 +ℎ cva 28491 ·ℎ csm 28492 LinFnclf 28525 bracbr 28527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-hilex 28570 ax-hfvadd 28571 ax-hfvmul 28576 ax-hfi 28650 ax-his2 28654 ax-his3 28655 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-map 8206 df-lnfn 29421 df-bra 29423 |
This theorem is referenced by: rnbra 29680 kbass4 29692 |
Copyright terms: Public domain | W3C validator |