HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bralnfn Structured version   Visualization version   GIF version

Theorem bralnfn 31468
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
bralnfn (𝐴 ∈ β„‹ β†’ (braβ€˜π΄) ∈ LinFn)

Proof of Theorem bralnfn
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brafn 31467 . 2 (𝐴 ∈ β„‹ β†’ (braβ€˜π΄): β„‹βŸΆβ„‚)
2 simpll 763 . . . . . 6 (((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) ∧ (𝑦 ∈ β„‹ ∧ 𝑧 ∈ β„‹)) β†’ 𝐴 ∈ β„‹)
3 hvmulcl 30533 . . . . . . 7 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‹) β†’ (π‘₯ Β·β„Ž 𝑦) ∈ β„‹)
43ad2ant2lr 744 . . . . . 6 (((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) ∧ (𝑦 ∈ β„‹ ∧ 𝑧 ∈ β„‹)) β†’ (π‘₯ Β·β„Ž 𝑦) ∈ β„‹)
5 simprr 769 . . . . . 6 (((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) ∧ (𝑦 ∈ β„‹ ∧ 𝑧 ∈ β„‹)) β†’ 𝑧 ∈ β„‹)
6 braadd 31465 . . . . . 6 ((𝐴 ∈ β„‹ ∧ (π‘₯ Β·β„Ž 𝑦) ∈ β„‹ ∧ 𝑧 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = (((braβ€˜π΄)β€˜(π‘₯ Β·β„Ž 𝑦)) + ((braβ€˜π΄)β€˜π‘§)))
72, 4, 5, 6syl3anc 1369 . . . . 5 (((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) ∧ (𝑦 ∈ β„‹ ∧ 𝑧 ∈ β„‹)) β†’ ((braβ€˜π΄)β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = (((braβ€˜π΄)β€˜(π‘₯ Β·β„Ž 𝑦)) + ((braβ€˜π΄)β€˜π‘§)))
8 bramul 31466 . . . . . . . 8 ((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜(π‘₯ Β·β„Ž 𝑦)) = (π‘₯ Β· ((braβ€˜π΄)β€˜π‘¦)))
983expa 1116 . . . . . . 7 (((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) ∧ 𝑦 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜(π‘₯ Β·β„Ž 𝑦)) = (π‘₯ Β· ((braβ€˜π΄)β€˜π‘¦)))
109adantrr 713 . . . . . 6 (((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) ∧ (𝑦 ∈ β„‹ ∧ 𝑧 ∈ β„‹)) β†’ ((braβ€˜π΄)β€˜(π‘₯ Β·β„Ž 𝑦)) = (π‘₯ Β· ((braβ€˜π΄)β€˜π‘¦)))
1110oveq1d 7426 . . . . 5 (((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) ∧ (𝑦 ∈ β„‹ ∧ 𝑧 ∈ β„‹)) β†’ (((braβ€˜π΄)β€˜(π‘₯ Β·β„Ž 𝑦)) + ((braβ€˜π΄)β€˜π‘§)) = ((π‘₯ Β· ((braβ€˜π΄)β€˜π‘¦)) + ((braβ€˜π΄)β€˜π‘§)))
127, 11eqtrd 2770 . . . 4 (((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) ∧ (𝑦 ∈ β„‹ ∧ 𝑧 ∈ β„‹)) β†’ ((braβ€˜π΄)β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = ((π‘₯ Β· ((braβ€˜π΄)β€˜π‘¦)) + ((braβ€˜π΄)β€˜π‘§)))
1312ralrimivva 3198 . . 3 ((𝐴 ∈ β„‹ ∧ π‘₯ ∈ β„‚) β†’ βˆ€π‘¦ ∈ β„‹ βˆ€π‘§ ∈ β„‹ ((braβ€˜π΄)β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = ((π‘₯ Β· ((braβ€˜π΄)β€˜π‘¦)) + ((braβ€˜π΄)β€˜π‘§)))
1413ralrimiva 3144 . 2 (𝐴 ∈ β„‹ β†’ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ β„‹ βˆ€π‘§ ∈ β„‹ ((braβ€˜π΄)β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = ((π‘₯ Β· ((braβ€˜π΄)β€˜π‘¦)) + ((braβ€˜π΄)β€˜π‘§)))
15 ellnfn 31403 . 2 ((braβ€˜π΄) ∈ LinFn ↔ ((braβ€˜π΄): β„‹βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ β„‹ βˆ€π‘§ ∈ β„‹ ((braβ€˜π΄)β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = ((π‘₯ Β· ((braβ€˜π΄)β€˜π‘¦)) + ((braβ€˜π΄)β€˜π‘§))))
161, 14, 15sylanbrc 581 1 (𝐴 ∈ β„‹ β†’ (braβ€˜π΄) ∈ LinFn)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  β„‚cc 11110   + caddc 11115   Β· cmul 11117   β„‹chba 30439   +β„Ž cva 30440   Β·β„Ž csm 30441  LinFnclf 30474  bracbr 30476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-hilex 30519  ax-hfvadd 30520  ax-hfvmul 30525  ax-hfi 30599  ax-his2 30603  ax-his3 30604
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-lnfn 31368  df-bra 31370
This theorem is referenced by:  rnbra  31627  kbass4  31639
  Copyright terms: Public domain W3C validator