HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bralnfn Structured version   Visualization version   GIF version

Theorem bralnfn 31968
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
bralnfn (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)

Proof of Theorem bralnfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brafn 31967 . 2 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
2 simpll 766 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ)
3 hvmulcl 31033 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
43ad2ant2lr 748 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 · 𝑦) ∈ ℋ)
5 simprr 772 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ)
6 braadd 31965 . . . . . 6 ((𝐴 ∈ ℋ ∧ (𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)))
72, 4, 5, 6syl3anc 1372 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)))
8 bramul 31966 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
983expa 1118 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
109adantrr 717 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
1110oveq1d 7447 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
127, 11eqtrd 2776 . . . 4 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
1312ralrimivva 3201 . . 3 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
1413ralrimiva 3145 . 2 (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
15 ellnfn 31903 . 2 ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))))
161, 14, 15sylanbrc 583 1 (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  wf 6556  cfv 6560  (class class class)co 7432  cc 11154   + caddc 11159   · cmul 11161  chba 30939   + cva 30940   · csm 30941  LinFnclf 30974  bracbr 30976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-hilex 31019  ax-hfvadd 31020  ax-hfvmul 31025  ax-hfi 31099  ax-his2 31103  ax-his3 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-lnfn 31868  df-bra 31870
This theorem is referenced by:  rnbra  32127  kbass4  32139
  Copyright terms: Public domain W3C validator