Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  bralnfn Structured version   Visualization version   GIF version

Theorem bralnfn 29775
 Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
bralnfn (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)

Proof of Theorem bralnfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brafn 29774 . 2 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
2 simpll 766 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ)
3 hvmulcl 28840 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
43ad2ant2lr 747 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 · 𝑦) ∈ ℋ)
5 simprr 772 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ)
6 braadd 29772 . . . . . 6 ((𝐴 ∈ ℋ ∧ (𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)))
72, 4, 5, 6syl3anc 1368 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)))
8 bramul 29773 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
983expa 1115 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
109adantrr 716 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
1110oveq1d 7160 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
127, 11eqtrd 2833 . . . 4 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
1312ralrimivva 3156 . . 3 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
1413ralrimiva 3149 . 2 (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
15 ellnfn 29710 . 2 ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))))
161, 14, 15sylanbrc 586 1 (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  ℂcc 10542   + caddc 10547   · cmul 10549   ℋchba 28746   +ℎ cva 28747   ·ℎ csm 28748  LinFnclf 28781  bracbr 28783 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-hilex 28826  ax-hfvadd 28827  ax-hfvmul 28832  ax-hfi 28906  ax-his2 28910  ax-his3 28911 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8409  df-lnfn 29675  df-bra 29677 This theorem is referenced by:  rnbra  29934  kbass4  29946
 Copyright terms: Public domain W3C validator