| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > bralnfn | Structured version Visualization version GIF version | ||
| Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bralnfn | ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brafn 31849 | . 2 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) | |
| 2 | simpll 766 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ) | |
| 3 | hvmulcl 30915 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
| 4 | 3 | ad2ant2lr 748 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 ·ℎ 𝑦) ∈ ℋ) |
| 5 | simprr 772 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ) | |
| 6 | braadd 31847 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ (𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) | |
| 7 | 2, 4, 5, 6 | syl3anc 1373 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) |
| 8 | bramul 31848 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) | |
| 9 | 8 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
| 10 | 9 | adantrr 717 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
| 11 | 10 | oveq1d 7384 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
| 12 | 7, 11 | eqtrd 2764 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
| 13 | 12 | ralrimivva 3178 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
| 14 | 13 | ralrimiva 3125 | . 2 ⊢ (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
| 15 | ellnfn 31785 | . 2 ⊢ ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))) | |
| 16 | 1, 14, 15 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 + caddc 11047 · cmul 11049 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 LinFnclf 30856 bracbr 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-hilex 30901 ax-hfvadd 30902 ax-hfvmul 30907 ax-hfi 30981 ax-his2 30985 ax-his3 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-lnfn 31750 df-bra 31752 |
| This theorem is referenced by: rnbra 32009 kbass4 32021 |
| Copyright terms: Public domain | W3C validator |