Step | Hyp | Ref
| Expression |
1 | | brafn 31467 |
. 2
β’ (π΄ β β β
(braβπ΄):
ββΆβ) |
2 | | simpll 763 |
. . . . . 6
β’ (((π΄ β β β§ π₯ β β) β§ (π¦ β β β§ π§ β β)) β π΄ β
β) |
3 | | hvmulcl 30533 |
. . . . . . 7
β’ ((π₯ β β β§ π¦ β β) β (π₯
Β·β π¦) β β) |
4 | 3 | ad2ant2lr 744 |
. . . . . 6
β’ (((π΄ β β β§ π₯ β β) β§ (π¦ β β β§ π§ β β)) β (π₯
Β·β π¦) β β) |
5 | | simprr 769 |
. . . . . 6
β’ (((π΄ β β β§ π₯ β β) β§ (π¦ β β β§ π§ β β)) β π§ β
β) |
6 | | braadd 31465 |
. . . . . 6
β’ ((π΄ β β β§ (π₯
Β·β π¦) β β β§ π§ β β) β ((braβπ΄)β((π₯ Β·β π¦) +β π§)) = (((braβπ΄)β(π₯ Β·β π¦)) + ((braβπ΄)βπ§))) |
7 | 2, 4, 5, 6 | syl3anc 1369 |
. . . . 5
β’ (((π΄ β β β§ π₯ β β) β§ (π¦ β β β§ π§ β β)) β
((braβπ΄)β((π₯ Β·β π¦) +β π§)) = (((braβπ΄)β(π₯ Β·β π¦)) + ((braβπ΄)βπ§))) |
8 | | bramul 31466 |
. . . . . . . 8
β’ ((π΄ β β β§ π₯ β β β§ π¦ β β) β
((braβπ΄)β(π₯
Β·β π¦)) = (π₯ Β· ((braβπ΄)βπ¦))) |
9 | 8 | 3expa 1116 |
. . . . . . 7
β’ (((π΄ β β β§ π₯ β β) β§ π¦ β β) β
((braβπ΄)β(π₯
Β·β π¦)) = (π₯ Β· ((braβπ΄)βπ¦))) |
10 | 9 | adantrr 713 |
. . . . . 6
β’ (((π΄ β β β§ π₯ β β) β§ (π¦ β β β§ π§ β β)) β
((braβπ΄)β(π₯
Β·β π¦)) = (π₯ Β· ((braβπ΄)βπ¦))) |
11 | 10 | oveq1d 7426 |
. . . . 5
β’ (((π΄ β β β§ π₯ β β) β§ (π¦ β β β§ π§ β β)) β
(((braβπ΄)β(π₯ Β·β π¦)) + ((braβπ΄)βπ§)) = ((π₯ Β· ((braβπ΄)βπ¦)) + ((braβπ΄)βπ§))) |
12 | 7, 11 | eqtrd 2770 |
. . . 4
β’ (((π΄ β β β§ π₯ β β) β§ (π¦ β β β§ π§ β β)) β
((braβπ΄)β((π₯ Β·β π¦) +β π§)) = ((π₯ Β· ((braβπ΄)βπ¦)) + ((braβπ΄)βπ§))) |
13 | 12 | ralrimivva 3198 |
. . 3
β’ ((π΄ β β β§ π₯ β β) β
βπ¦ β β
βπ§ β β
((braβπ΄)β((π₯ Β·β π¦) +β π§)) = ((π₯ Β· ((braβπ΄)βπ¦)) + ((braβπ΄)βπ§))) |
14 | 13 | ralrimiva 3144 |
. 2
β’ (π΄ β β β
βπ₯ β β
βπ¦ β β
βπ§ β β
((braβπ΄)β((π₯ Β·β π¦) +β π§)) = ((π₯ Β· ((braβπ΄)βπ¦)) + ((braβπ΄)βπ§))) |
15 | | ellnfn 31403 |
. 2
β’
((braβπ΄)
β LinFn β ((braβπ΄): ββΆβ β§
βπ₯ β β
βπ¦ β β
βπ§ β β
((braβπ΄)β((π₯ Β·β π¦) +β π§)) = ((π₯ Β· ((braβπ΄)βπ¦)) + ((braβπ΄)βπ§)))) |
16 | 1, 14, 15 | sylanbrc 581 |
1
β’ (π΄ β β β
(braβπ΄) β
LinFn) |