Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > bralnfn | Structured version Visualization version GIF version |
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bralnfn | ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brafn 30028 | . 2 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) | |
2 | simpll 767 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ) | |
3 | hvmulcl 29094 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
4 | 3 | ad2ant2lr 748 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 ·ℎ 𝑦) ∈ ℋ) |
5 | simprr 773 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ) | |
6 | braadd 30026 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ (𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) | |
7 | 2, 4, 5, 6 | syl3anc 1373 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) |
8 | bramul 30027 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) | |
9 | 8 | 3expa 1120 | . . . . . . 7 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
10 | 9 | adantrr 717 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
11 | 10 | oveq1d 7228 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
12 | 7, 11 | eqtrd 2777 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
13 | 12 | ralrimivva 3112 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
14 | 13 | ralrimiva 3105 | . 2 ⊢ (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
15 | ellnfn 29964 | . 2 ⊢ ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))) | |
16 | 1, 14, 15 | sylanbrc 586 | 1 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 + caddc 10732 · cmul 10734 ℋchba 29000 +ℎ cva 29001 ·ℎ csm 29002 LinFnclf 29035 bracbr 29037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-hilex 29080 ax-hfvadd 29081 ax-hfvmul 29086 ax-hfi 29160 ax-his2 29164 ax-his3 29165 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-lnfn 29929 df-bra 29931 |
This theorem is referenced by: rnbra 30188 kbass4 30200 |
Copyright terms: Public domain | W3C validator |