HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bralnfn Structured version   Visualization version   GIF version

Theorem bralnfn 31980
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
bralnfn (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)

Proof of Theorem bralnfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brafn 31979 . 2 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
2 simpll 766 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ)
3 hvmulcl 31045 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
43ad2ant2lr 747 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 · 𝑦) ∈ ℋ)
5 simprr 772 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ)
6 braadd 31977 . . . . . 6 ((𝐴 ∈ ℋ ∧ (𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)))
72, 4, 5, 6syl3anc 1371 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)))
8 bramul 31978 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
983expa 1118 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
109adantrr 716 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 · 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦)))
1110oveq1d 7463 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 · 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
127, 11eqtrd 2780 . . . 4 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
1312ralrimivva 3208 . . 3 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
1413ralrimiva 3152 . 2 (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))
15 ellnfn 31915 . 2 ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))))
161, 14, 15sylanbrc 582 1 (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wf 6569  cfv 6573  (class class class)co 7448  cc 11182   + caddc 11187   · cmul 11189  chba 30951   + cva 30952   · csm 30953  LinFnclf 30986  bracbr 30988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-hilex 31031  ax-hfvadd 31032  ax-hfvmul 31037  ax-hfi 31111  ax-his2 31115  ax-his3 31116
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-lnfn 31880  df-bra 31882
This theorem is referenced by:  rnbra  32139  kbass4  32151
  Copyright terms: Public domain W3C validator