| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrici | Structured version Visualization version GIF version | ||
| Description: Prove isomorphic by an explicit isomorphism. (Contributed by SN, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| brrici | ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ≃𝑟 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4306 | . 2 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 RingIso 𝑆) ≠ ∅) | |
| 2 | brric 20419 | . 2 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ≃𝑟 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 class class class wbr 5109 (class class class)co 7389 RingIso crs 20385 ≃𝑟 cric 20386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-1o 8436 df-rim 20388 df-ric 20390 |
| This theorem is referenced by: idomsubr 33265 ricqusker 33404 ricsym 42500 rictr 42501 |
| Copyright terms: Public domain | W3C validator |