![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrici | Structured version Visualization version GIF version |
Description: Prove isomorphic by an explicit isomorphism. (Contributed by SN, 10-Jan-2025.) |
Ref | Expression |
---|---|
brrici | ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ≃𝑟 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4350 | . 2 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 RingIso 𝑆) ≠ ∅) | |
2 | brric 20530 | . 2 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ≃𝑟 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2940 ∅c0 4342 class class class wbr 5151 (class class class)co 7438 RingIso crs 20496 ≃𝑟 cric 20497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-1o 8514 df-rim 20499 df-ric 20501 |
This theorem is referenced by: idomsubr 33323 ricqusker 33467 ricsym 42522 rictr 42523 |
Copyright terms: Public domain | W3C validator |