Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rictr Structured version   Visualization version   GIF version

Theorem rictr 42638
Description: Ring isomorphism is transitive. (Contributed by SN, 17-Jan-2025.)
Assertion
Ref Expression
rictr ((𝑅𝑟 𝑆𝑆𝑟 𝑇) → 𝑅𝑟 𝑇)

Proof of Theorem rictr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brric 20421 . 2 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
2 brric 20421 . 2 (𝑆𝑟 𝑇 ↔ (𝑆 RingIso 𝑇) ≠ ∅)
3 n0 4302 . . 3 ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
4 n0 4302 . . 3 ((𝑆 RingIso 𝑇) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑆 RingIso 𝑇))
5 exdistrv 1956 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑔 ∈ (𝑆 RingIso 𝑇)) ↔ (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 RingIso 𝑇)))
6 rimco 42636 . . . . . . 7 ((𝑔 ∈ (𝑆 RingIso 𝑇) ∧ 𝑓 ∈ (𝑅 RingIso 𝑆)) → (𝑔𝑓) ∈ (𝑅 RingIso 𝑇))
7 brrici 20422 . . . . . . 7 ((𝑔𝑓) ∈ (𝑅 RingIso 𝑇) → 𝑅𝑟 𝑇)
86, 7syl 17 . . . . . 6 ((𝑔 ∈ (𝑆 RingIso 𝑇) ∧ 𝑓 ∈ (𝑅 RingIso 𝑆)) → 𝑅𝑟 𝑇)
98ancoms 458 . . . . 5 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑔 ∈ (𝑆 RingIso 𝑇)) → 𝑅𝑟 𝑇)
109exlimivv 1933 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑔 ∈ (𝑆 RingIso 𝑇)) → 𝑅𝑟 𝑇)
115, 10sylbir 235 . . 3 ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 RingIso 𝑇)) → 𝑅𝑟 𝑇)
123, 4, 11syl2anb 598 . 2 (((𝑅 RingIso 𝑆) ≠ ∅ ∧ (𝑆 RingIso 𝑇) ≠ ∅) → 𝑅𝑟 𝑇)
131, 2, 12syl2anb 598 1 ((𝑅𝑟 𝑆𝑆𝑟 𝑇) → 𝑅𝑟 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5093  ccom 5623  (class class class)co 7352   RingIso crs 20390  𝑟 cric 20391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-ghm 19127  df-mgp 20061  df-ur 20102  df-ring 20155  df-rhm 20392  df-rim 20393  df-ric 20395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator