![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rictr | Structured version Visualization version GIF version |
Description: Ring isomorphism is transitive. (Contributed by SN, 17-Jan-2025.) |
Ref | Expression |
---|---|
rictr | ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑆 ≃𝑟 𝑇) → 𝑅 ≃𝑟 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brric 20506 | . 2 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | |
2 | brric 20506 | . 2 ⊢ (𝑆 ≃𝑟 𝑇 ↔ (𝑆 RingIso 𝑇) ≠ ∅) | |
3 | n0 4359 | . . 3 ⊢ ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆)) | |
4 | n0 4359 | . . 3 ⊢ ((𝑆 RingIso 𝑇) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑆 RingIso 𝑇)) | |
5 | exdistrv 1951 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑔 ∈ (𝑆 RingIso 𝑇)) ↔ (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 RingIso 𝑇))) | |
6 | rimco 42459 | . . . . . . 7 ⊢ ((𝑔 ∈ (𝑆 RingIso 𝑇) ∧ 𝑓 ∈ (𝑅 RingIso 𝑆)) → (𝑔 ∘ 𝑓) ∈ (𝑅 RingIso 𝑇)) | |
7 | brrici 20507 | . . . . . . 7 ⊢ ((𝑔 ∘ 𝑓) ∈ (𝑅 RingIso 𝑇) → 𝑅 ≃𝑟 𝑇) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝑔 ∈ (𝑆 RingIso 𝑇) ∧ 𝑓 ∈ (𝑅 RingIso 𝑆)) → 𝑅 ≃𝑟 𝑇) |
9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑔 ∈ (𝑆 RingIso 𝑇)) → 𝑅 ≃𝑟 𝑇) |
10 | 9 | exlimivv 1928 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑔 ∈ (𝑆 RingIso 𝑇)) → 𝑅 ≃𝑟 𝑇) |
11 | 5, 10 | sylbir 235 | . . 3 ⊢ ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 RingIso 𝑇)) → 𝑅 ≃𝑟 𝑇) |
12 | 3, 4, 11 | syl2anb 597 | . 2 ⊢ (((𝑅 RingIso 𝑆) ≠ ∅ ∧ (𝑆 RingIso 𝑇) ≠ ∅) → 𝑅 ≃𝑟 𝑇) |
13 | 1, 2, 12 | syl2anb 597 | 1 ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑆 ≃𝑟 𝑇) → 𝑅 ≃𝑟 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1774 ∈ wcel 2104 ≠ wne 2936 ∅c0 4339 class class class wbr 5149 ∘ ccom 5687 (class class class)co 7425 RingIso crs 20472 ≃𝑟 cric 20473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-om 7881 df-1st 8007 df-2nd 8008 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-1o 8499 df-er 8738 df-map 8861 df-en 8979 df-dom 8980 df-sdom 8981 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-nn 12258 df-2 12320 df-sets 17187 df-slot 17205 df-ndx 17217 df-base 17235 df-plusg 17300 df-0g 17477 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18794 df-grp 18952 df-ghm 19229 df-mgp 20138 df-ur 20185 df-ring 20238 df-rhm 20474 df-rim 20475 df-ric 20477 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |