![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brric2 | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc 37632 of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
brric2 | ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brric 20481 | . 2 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | |
2 | n0 4348 | . 2 ⊢ ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆)) | |
3 | rimrhm 20473 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 RingHom 𝑆)) | |
4 | eqid 2725 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | eqid 2725 | . . . . . . 7 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
6 | 4, 5 | isrhm 20455 | . . . . . 6 ⊢ (𝑓 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝑓 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑓 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
7 | 6 | simplbi 496 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring)) |
8 | 3, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring)) |
9 | 8 | exlimiv 1925 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring)) |
10 | 9 | pm4.71ri 559 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))) |
11 | 1, 2, 10 | 3bitri 296 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wex 1773 ∈ wcel 2098 ≠ wne 2929 ∅c0 4324 class class class wbr 5152 ‘cfv 6553 (class class class)co 7423 MndHom cmhm 18766 GrpHom cghm 19201 mulGrpcmgp 20112 Ringcrg 20211 RingHom crh 20446 RingIso crs 20447 ≃𝑟 cric 20448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8856 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-plusg 17274 df-0g 17451 df-mhm 18768 df-ghm 19202 df-mgp 20113 df-ur 20160 df-ring 20213 df-rhm 20449 df-rim 20450 df-ric 20452 |
This theorem is referenced by: ricgic 20484 |
Copyright terms: Public domain | W3C validator |