| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caofrss | Structured version Visualization version GIF version | ||
| Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| caofcom.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
| caofrss.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
| Ref | Expression |
|---|---|
| caofrss | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 → 𝐹 ∘r 𝑇𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffvelcdmda 7017 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 3 | caofcom.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
| 4 | 3 | ffvelcdmda 7017 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
| 5 | caofrss.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) | |
| 6 | 5 | ralrimivva 3175 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
| 8 | breq1 5094 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑤)𝑅𝑦)) | |
| 9 | breq1 5094 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑇𝑦 ↔ (𝐹‘𝑤)𝑇𝑦)) | |
| 10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦 → 𝑥𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦))) |
| 11 | breq2 5095 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦 ↔ (𝐹‘𝑤)𝑅(𝐺‘𝑤))) | |
| 12 | breq2 5095 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑇𝑦 ↔ (𝐹‘𝑤)𝑇(𝐺‘𝑤))) | |
| 13 | 11, 12 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
| 14 | 10, 13 | rspc2va 3589 | . . . 4 ⊢ ((((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 15 | 2, 4, 7, 14 | syl21anc 837 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 16 | 15 | ralimdva 3144 | . 2 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 17 | 1 | ffnd 6652 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 18 | 3 | ffnd 6652 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 19 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 20 | inidm 4177 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 21 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
| 22 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝐺‘𝑤)) | |
| 23 | 17, 18, 19, 19, 20, 21, 22 | ofrfval 7620 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
| 24 | 17, 18, 19, 19, 20, 21, 22 | ofrfval 7620 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑇𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 25 | 16, 23, 24 | 3imtr4d 294 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 → 𝐹 ∘r 𝑇𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 ∘r cofr 7609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ofr 7611 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |