Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caofrss | Structured version Visualization version GIF version |
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofcom.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofrss.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
Ref | Expression |
---|---|
caofrss | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 → 𝐹 ∘r 𝑇𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffvelrnda 6956 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
3 | caofcom.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
4 | 3 | ffvelrnda 6956 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
5 | caofrss.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) | |
6 | 5 | ralrimivva 3117 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
8 | breq1 5082 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑤)𝑅𝑦)) | |
9 | breq1 5082 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑇𝑦 ↔ (𝐹‘𝑤)𝑇𝑦)) | |
10 | 8, 9 | imbi12d 345 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦 → 𝑥𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦))) |
11 | breq2 5083 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦 ↔ (𝐹‘𝑤)𝑅(𝐺‘𝑤))) | |
12 | breq2 5083 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑇𝑦 ↔ (𝐹‘𝑤)𝑇(𝐺‘𝑤))) | |
13 | 11, 12 | imbi12d 345 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
14 | 10, 13 | rspc2va 3572 | . . . 4 ⊢ ((((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
15 | 2, 4, 7, 14 | syl21anc 835 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
16 | 15 | ralimdva 3105 | . 2 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
17 | 1 | ffnd 6598 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
18 | 3 | ffnd 6598 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
19 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
20 | inidm 4158 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
21 | eqidd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
22 | eqidd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝐺‘𝑤)) | |
23 | 17, 18, 19, 19, 20, 21, 22 | ofrfval 7535 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
24 | 17, 18, 19, 19, 20, 21, 22 | ofrfval 7535 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑇𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
25 | 16, 23, 24 | 3imtr4d 294 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 → 𝐹 ∘r 𝑇𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 class class class wbr 5079 ⟶wf 6427 ‘cfv 6431 ∘r cofr 7524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ofr 7526 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |