MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofrss Structured version   Visualization version   GIF version

Theorem caofrss 7649
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofrss.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦𝑥𝑇𝑦))
Assertion
Ref Expression
caofrss (𝜑 → (𝐹r 𝑅𝐺𝐹r 𝑇𝐺))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofrss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
21ffvelcdmda 7017 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7017 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
5 caofrss.4 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦𝑥𝑇𝑦))
65ralrimivva 3175 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦))
76adantr 480 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦))
8 breq1 5094 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦 ↔ (𝐹𝑤)𝑅𝑦))
9 breq1 5094 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝑥𝑇𝑦 ↔ (𝐹𝑤)𝑇𝑦))
108, 9imbi12d 344 . . . . 5 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦𝑥𝑇𝑦) ↔ ((𝐹𝑤)𝑅𝑦 → (𝐹𝑤)𝑇𝑦)))
11 breq2 5095 . . . . . 6 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦 ↔ (𝐹𝑤)𝑅(𝐺𝑤)))
12 breq2 5095 . . . . . 6 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑇𝑦 ↔ (𝐹𝑤)𝑇(𝐺𝑤)))
1311, 12imbi12d 344 . . . . 5 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦 → (𝐹𝑤)𝑇𝑦) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤))))
1410, 13rspc2va 3589 . . . 4 ((((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦)) → ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤)))
152, 4, 7, 14syl21anc 837 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤)))
1615ralimdva 3144 . 2 (𝜑 → (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) → ∀𝑤𝐴 (𝐹𝑤)𝑇(𝐺𝑤)))
171ffnd 6652 . . 3 (𝜑𝐹 Fn 𝐴)
183ffnd 6652 . . 3 (𝜑𝐺 Fn 𝐴)
19 caofref.1 . . 3 (𝜑𝐴𝑉)
20 inidm 4177 . . 3 (𝐴𝐴) = 𝐴
21 eqidd 2732 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
22 eqidd 2732 . . 3 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
2317, 18, 19, 19, 20, 21, 22ofrfval 7620 . 2 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤)))
2417, 18, 19, 19, 20, 21, 22ofrfval 7620 . 2 (𝜑 → (𝐹r 𝑇𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑇(𝐺𝑤)))
2516, 23, 243imtr4d 294 1 (𝜑 → (𝐹r 𝑅𝐺𝐹r 𝑇𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  wf 6477  cfv 6481  r cofr 7609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ofr 7611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator