Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caofrss | Structured version Visualization version GIF version |
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofcom.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofrss.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
Ref | Expression |
---|---|
caofrss | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 → 𝐹 ∘r 𝑇𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffvelrnda 6943 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
3 | caofcom.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
4 | 3 | ffvelrnda 6943 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
5 | caofrss.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) | |
6 | 5 | ralrimivva 3114 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
8 | breq1 5073 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑤)𝑅𝑦)) | |
9 | breq1 5073 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑇𝑦 ↔ (𝐹‘𝑤)𝑇𝑦)) | |
10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦 → 𝑥𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦))) |
11 | breq2 5074 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦 ↔ (𝐹‘𝑤)𝑅(𝐺‘𝑤))) | |
12 | breq2 5074 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑇𝑦 ↔ (𝐹‘𝑤)𝑇(𝐺‘𝑤))) | |
13 | 11, 12 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
14 | 10, 13 | rspc2va 3563 | . . . 4 ⊢ ((((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
15 | 2, 4, 7, 14 | syl21anc 834 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
16 | 15 | ralimdva 3102 | . 2 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
17 | 1 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
18 | 3 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
19 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
20 | inidm 4149 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
21 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
22 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝐺‘𝑤)) | |
23 | 17, 18, 19, 19, 20, 21, 22 | ofrfval 7521 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
24 | 17, 18, 19, 19, 20, 21, 22 | ofrfval 7521 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑇𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
25 | 16, 23, 24 | 3imtr4d 293 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 → 𝐹 ∘r 𝑇𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 ∘r cofr 7510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ofr 7512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |