MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofrss Structured version   Visualization version   GIF version

Theorem caofrss 7692
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofrss.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦𝑥𝑇𝑦))
Assertion
Ref Expression
caofrss (𝜑 → (𝐹r 𝑅𝐺𝐹r 𝑇𝐺))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofrss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
21ffvelcdmda 7056 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7056 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
5 caofrss.4 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦𝑥𝑇𝑦))
65ralrimivva 3180 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦))
76adantr 480 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦))
8 breq1 5110 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦 ↔ (𝐹𝑤)𝑅𝑦))
9 breq1 5110 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝑥𝑇𝑦 ↔ (𝐹𝑤)𝑇𝑦))
108, 9imbi12d 344 . . . . 5 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦𝑥𝑇𝑦) ↔ ((𝐹𝑤)𝑅𝑦 → (𝐹𝑤)𝑇𝑦)))
11 breq2 5111 . . . . . 6 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦 ↔ (𝐹𝑤)𝑅(𝐺𝑤)))
12 breq2 5111 . . . . . 6 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑇𝑦 ↔ (𝐹𝑤)𝑇(𝐺𝑤)))
1311, 12imbi12d 344 . . . . 5 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦 → (𝐹𝑤)𝑇𝑦) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤))))
1410, 13rspc2va 3600 . . . 4 ((((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦)) → ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤)))
152, 4, 7, 14syl21anc 837 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤)))
1615ralimdva 3145 . 2 (𝜑 → (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) → ∀𝑤𝐴 (𝐹𝑤)𝑇(𝐺𝑤)))
171ffnd 6689 . . 3 (𝜑𝐹 Fn 𝐴)
183ffnd 6689 . . 3 (𝜑𝐺 Fn 𝐴)
19 caofref.1 . . 3 (𝜑𝐴𝑉)
20 inidm 4190 . . 3 (𝐴𝐴) = 𝐴
21 eqidd 2730 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
22 eqidd 2730 . . 3 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
2317, 18, 19, 19, 20, 21, 22ofrfval 7663 . 2 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤)))
2417, 18, 19, 19, 20, 21, 22ofrfval 7663 . 2 (𝜑 → (𝐹r 𝑇𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑇(𝐺𝑤)))
2516, 23, 243imtr4d 294 1 (𝜑 → (𝐹r 𝑅𝐺𝐹r 𝑇𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  wf 6507  cfv 6511  r cofr 7652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ofr 7654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator