| Step | Hyp | Ref
| Expression |
| 1 | | caofass.5 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧))) |
| 2 | 1 | ralrimivvva 3191 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧))) |
| 3 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧))) |
| 4 | | caofref.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| 5 | 4 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 6 | | caofcom.3 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
| 7 | 6 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
| 8 | | caofass.4 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
| 9 | 8 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
| 10 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦) = ((𝐹‘𝑤)𝑅𝑦)) |
| 11 | 10 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦)𝑇𝑧) = (((𝐹‘𝑤)𝑅𝑦)𝑇𝑧)) |
| 12 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑂(𝑦𝑃𝑧)) = ((𝐹‘𝑤)𝑂(𝑦𝑃𝑧))) |
| 13 | 11, 12 | eqeq12d 2752 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑤) → (((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) ↔ (((𝐹‘𝑤)𝑅𝑦)𝑇𝑧) = ((𝐹‘𝑤)𝑂(𝑦𝑃𝑧)))) |
| 14 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦) = ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
| 15 | 14 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦)𝑇𝑧) = (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇𝑧)) |
| 16 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑤) → (𝑦𝑃𝑧) = ((𝐺‘𝑤)𝑃𝑧)) |
| 17 | 16 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑂(𝑦𝑃𝑧)) = ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃𝑧))) |
| 18 | 15, 17 | eqeq12d 2752 |
. . . . . 6
⊢ (𝑦 = (𝐺‘𝑤) → ((((𝐹‘𝑤)𝑅𝑦)𝑇𝑧) = ((𝐹‘𝑤)𝑂(𝑦𝑃𝑧)) ↔ (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇𝑧) = ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃𝑧)))) |
| 19 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑧 = (𝐻‘𝑤) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇𝑧) = (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇(𝐻‘𝑤))) |
| 20 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑧 = (𝐻‘𝑤) → ((𝐺‘𝑤)𝑃𝑧) = ((𝐺‘𝑤)𝑃(𝐻‘𝑤))) |
| 21 | 20 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑧 = (𝐻‘𝑤) → ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃𝑧)) = ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃(𝐻‘𝑤)))) |
| 22 | 19, 21 | eqeq12d 2752 |
. . . . . 6
⊢ (𝑧 = (𝐻‘𝑤) → ((((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇𝑧) = ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃𝑧)) ↔ (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇(𝐻‘𝑤)) = ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃(𝐻‘𝑤))))) |
| 23 | 13, 18, 22 | rspc3v 3622 |
. . . . 5
⊢ (((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆 ∧ (𝐻‘𝑤) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇(𝐻‘𝑤)) = ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃(𝐻‘𝑤))))) |
| 24 | 5, 7, 9, 23 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇(𝐻‘𝑤)) = ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃(𝐻‘𝑤))))) |
| 25 | 3, 24 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇(𝐻‘𝑤)) = ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃(𝐻‘𝑤)))) |
| 26 | 25 | mpteq2dva 5219 |
. 2
⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇(𝐻‘𝑤))) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃(𝐻‘𝑤))))) |
| 27 | | caofref.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 28 | | ovexd 7445 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) ∈ V) |
| 29 | 4 | feqmptd 6952 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
| 30 | 6 | feqmptd 6952 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
| 31 | 27, 5, 7, 29, 30 | offval2 7696 |
. . 3
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤)))) |
| 32 | 8 | feqmptd 6952 |
. . 3
⊢ (𝜑 → 𝐻 = (𝑤 ∈ 𝐴 ↦ (𝐻‘𝑤))) |
| 33 | 27, 28, 9, 31, 32 | offval2 7696 |
. 2
⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘f 𝑇𝐻) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑅(𝐺‘𝑤))𝑇(𝐻‘𝑤)))) |
| 34 | | ovexd 7445 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑃(𝐻‘𝑤)) ∈ V) |
| 35 | 27, 7, 9, 30, 32 | offval2 7696 |
. . 3
⊢ (𝜑 → (𝐺 ∘f 𝑃𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑃(𝐻‘𝑤)))) |
| 36 | 27, 5, 34, 29, 35 | offval2 7696 |
. 2
⊢ (𝜑 → (𝐹 ∘f 𝑂(𝐺 ∘f 𝑃𝐻)) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑂((𝐺‘𝑤)𝑃(𝐻‘𝑤))))) |
| 37 | 26, 33, 36 | 3eqtr4d 2781 |
1
⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘f 𝑇𝐻) = (𝐹 ∘f 𝑂(𝐺 ∘f 𝑃𝐻))) |