MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofass Structured version   Visualization version   GIF version

Theorem caofass 7570
Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofass.4 (𝜑𝐻:𝐴𝑆)
caofass.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
Assertion
Ref Expression
caofass (𝜑 → ((𝐹f 𝑅𝐺) ∘f 𝑇𝐻) = (𝐹f 𝑂(𝐺f 𝑃𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofass
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofass.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
21ralrimivvva 3127 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
32adantr 481 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
4 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
54ffvelrnda 6961 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
6 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
76ffvelrnda 6961 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
8 caofass.4 . . . . . 6 (𝜑𝐻:𝐴𝑆)
98ffvelrnda 6961 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
10 oveq1 7282 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦) = ((𝐹𝑤)𝑅𝑦))
1110oveq1d 7290 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦)𝑇𝑧) = (((𝐹𝑤)𝑅𝑦)𝑇𝑧))
12 oveq1 7282 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑂(𝑦𝑃𝑧)) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧)))
1311, 12eqeq12d 2754 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) ↔ (((𝐹𝑤)𝑅𝑦)𝑇𝑧) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧))))
14 oveq2 7283 . . . . . . . 8 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦) = ((𝐹𝑤)𝑅(𝐺𝑤)))
1514oveq1d 7290 . . . . . . 7 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦)𝑇𝑧) = (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧))
16 oveq1 7282 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (𝑦𝑃𝑧) = ((𝐺𝑤)𝑃𝑧))
1716oveq2d 7291 . . . . . . 7 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑂(𝑦𝑃𝑧)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)))
1815, 17eqeq12d 2754 . . . . . 6 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦)𝑇𝑧) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧)) ↔ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧))))
19 oveq2 7283 . . . . . . 7 (𝑧 = (𝐻𝑤) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)))
20 oveq2 7283 . . . . . . . 8 (𝑧 = (𝐻𝑤) → ((𝐺𝑤)𝑃𝑧) = ((𝐺𝑤)𝑃(𝐻𝑤)))
2120oveq2d 7291 . . . . . . 7 (𝑧 = (𝐻𝑤) → ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤))))
2219, 21eqeq12d 2754 . . . . . 6 (𝑧 = (𝐻𝑤) → ((((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)) ↔ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
2313, 18, 22rspc3v 3573 . . . . 5 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
245, 7, 9, 23syl3anc 1370 . . . 4 ((𝜑𝑤𝐴) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
253, 24mpd 15 . . 3 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤))))
2625mpteq2dva 5174 . 2 (𝜑 → (𝑤𝐴 ↦ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤))) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
27 caofref.1 . . 3 (𝜑𝐴𝑉)
28 ovexd 7310 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
294feqmptd 6837 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
306feqmptd 6837 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
3127, 5, 7, 29, 30offval2 7553 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
328feqmptd 6837 . . 3 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
3327, 28, 9, 31, 32offval2 7553 . 2 (𝜑 → ((𝐹f 𝑅𝐺) ∘f 𝑇𝐻) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤))))
34 ovexd 7310 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑃(𝐻𝑤)) ∈ V)
3527, 7, 9, 30, 32offval2 7553 . . 3 (𝜑 → (𝐺f 𝑃𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑃(𝐻𝑤))))
3627, 5, 34, 29, 35offval2 7553 . 2 (𝜑 → (𝐹f 𝑂(𝐺f 𝑃𝐻)) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
3726, 33, 363eqtr4d 2788 1 (𝜑 → ((𝐹f 𝑅𝐺) ∘f 𝑇𝐻) = (𝐹f 𝑂(𝐺f 𝑃𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533
This theorem is referenced by:  psrgrp  21167  psrlmod  21170  mndvass  21541  itg2mulc  24912  plydivlem4  25456  dchrabl  26402  lfladdass  37087  lflvsass  37095  expgrowth  41953
  Copyright terms: Public domain W3C validator