MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofass Structured version   Visualization version   GIF version

Theorem caofass 7654
Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofass.4 (𝜑𝐻:𝐴𝑆)
caofass.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
Assertion
Ref Expression
caofass (𝜑 → ((𝐹f 𝑅𝐺) ∘f 𝑇𝐻) = (𝐹f 𝑂(𝐺f 𝑃𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofass
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofass.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
21ralrimivvva 3200 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
32adantr 481 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)))
4 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
54ffvelcdmda 7035 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
6 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
76ffvelcdmda 7035 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
8 caofass.4 . . . . . 6 (𝜑𝐻:𝐴𝑆)
98ffvelcdmda 7035 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
10 oveq1 7364 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦) = ((𝐹𝑤)𝑅𝑦))
1110oveq1d 7372 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦)𝑇𝑧) = (((𝐹𝑤)𝑅𝑦)𝑇𝑧))
12 oveq1 7364 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑂(𝑦𝑃𝑧)) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧)))
1311, 12eqeq12d 2752 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) ↔ (((𝐹𝑤)𝑅𝑦)𝑇𝑧) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧))))
14 oveq2 7365 . . . . . . . 8 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦) = ((𝐹𝑤)𝑅(𝐺𝑤)))
1514oveq1d 7372 . . . . . . 7 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦)𝑇𝑧) = (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧))
16 oveq1 7364 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (𝑦𝑃𝑧) = ((𝐺𝑤)𝑃𝑧))
1716oveq2d 7373 . . . . . . 7 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑂(𝑦𝑃𝑧)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)))
1815, 17eqeq12d 2752 . . . . . 6 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦)𝑇𝑧) = ((𝐹𝑤)𝑂(𝑦𝑃𝑧)) ↔ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧))))
19 oveq2 7365 . . . . . . 7 (𝑧 = (𝐻𝑤) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)))
20 oveq2 7365 . . . . . . . 8 (𝑧 = (𝐻𝑤) → ((𝐺𝑤)𝑃𝑧) = ((𝐺𝑤)𝑃(𝐻𝑤)))
2120oveq2d 7373 . . . . . . 7 (𝑧 = (𝐻𝑤) → ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤))))
2219, 21eqeq12d 2752 . . . . . 6 (𝑧 = (𝐻𝑤) → ((((𝐹𝑤)𝑅(𝐺𝑤))𝑇𝑧) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃𝑧)) ↔ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
2313, 18, 22rspc3v 3593 . . . . 5 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
245, 7, 9, 23syl3anc 1371 . . . 4 ((𝜑𝑤𝐴) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧)) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
253, 24mpd 15 . . 3 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤)) = ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤))))
2625mpteq2dva 5205 . 2 (𝜑 → (𝑤𝐴 ↦ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤))) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
27 caofref.1 . . 3 (𝜑𝐴𝑉)
28 ovexd 7392 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
294feqmptd 6910 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
306feqmptd 6910 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
3127, 5, 7, 29, 30offval2 7637 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
328feqmptd 6910 . . 3 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
3327, 28, 9, 31, 32offval2 7637 . 2 (𝜑 → ((𝐹f 𝑅𝐺) ∘f 𝑇𝐻) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑅(𝐺𝑤))𝑇(𝐻𝑤))))
34 ovexd 7392 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑃(𝐻𝑤)) ∈ V)
3527, 7, 9, 30, 32offval2 7637 . . 3 (𝜑 → (𝐺f 𝑃𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑃(𝐻𝑤))))
3627, 5, 34, 29, 35offval2 7637 . 2 (𝜑 → (𝐹f 𝑂(𝐺f 𝑃𝐻)) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑂((𝐺𝑤)𝑃(𝐻𝑤)))))
3726, 33, 363eqtr4d 2786 1 (𝜑 → ((𝐹f 𝑅𝐺) ∘f 𝑇𝐻) = (𝐹f 𝑂(𝐺f 𝑃𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617
This theorem is referenced by:  psrgrpOLD  21367  psrlmod  21370  mndvass  21741  itg2mulc  25112  plydivlem4  25656  dchrabl  26602  lfladdass  37535  lflvsass  37543  expgrowth  42605
  Copyright terms: Public domain W3C validator