| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caufpm | Structured version Visualization version GIF version | ||
| Description: Inclusion of a Cauchy sequence, under our definition. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.) |
| Ref | Expression |
|---|---|
| caufpm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscau 25204 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑦)):(ℤ≥‘𝑦)⟶((𝐹‘𝑦)(ball‘𝐷)𝑥)))) | |
| 2 | 1 | simprbda 498 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ↾ cres 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑pm cpm 8757 ℂcc 11011 ℤcz 12475 ℤ≥cuz 12738 ℝ+crp 12892 ∞Metcxmet 21278 ballcbl 21280 Cauccau 25181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-xr 11157 df-xmet 21286 df-cau 25184 |
| This theorem is referenced by: cmetcaulem 25216 causs 25226 |
| Copyright terms: Public domain | W3C validator |