MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caufpm Structured version   Visualization version   GIF version

Theorem caufpm 23877
Description: Inclusion of a Cauchy sequence, under our definition. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
caufpm ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))

Proof of Theorem caufpm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscau 23871 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ (𝐹 ↾ (ℤ𝑦)):(ℤ𝑦)⟶((𝐹𝑦)(ball‘𝐷)𝑥))))
21simprbda 502 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115  wral 3132  wrex 3133  cres 5540  wf 6334  cfv 6338  (class class class)co 7140  pm cpm 8392  cc 10522  cz 11969  cuz 12231  +crp 12377  ∞Metcxmet 20518  ballcbl 20520  Cauccau 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-fv 6346  df-ov 7143  df-oprab 7144  df-mpo 7145  df-map 8393  df-xr 10666  df-xmet 20526  df-cau 23851
This theorem is referenced by:  cmetcaulem  23883  causs  23893
  Copyright terms: Public domain W3C validator