|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > caufpm | Structured version Visualization version GIF version | ||
| Description: Inclusion of a Cauchy sequence, under our definition. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| caufpm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm ℂ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iscau 25311 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑦)):(ℤ≥‘𝑦)⟶((𝐹‘𝑦)(ball‘𝐷)𝑥)))) | |
| 2 | 1 | simprbda 498 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm ℂ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ↾ cres 5686 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑pm cpm 8868 ℂcc 11154 ℤcz 12615 ℤ≥cuz 12879 ℝ+crp 13035 ∞Metcxmet 21350 ballcbl 21352 Cauccau 25288 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-xr 11300 df-xmet 21358 df-cau 25291 | 
| This theorem is referenced by: cmetcaulem 25323 causs 25333 | 
| Copyright terms: Public domain | W3C validator |