MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  causs Structured version   Visualization version   GIF version

Theorem causs 23901
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
causs ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))

Proof of Theorem causs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caufpm 23885 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
2 elfvdm 6702 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 10618 . . . . . . . . . 10 ℂ ∈ V
4 elpmg 8422 . . . . . . . . . 10 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 588 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65biimpa 479 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
71, 6syldan 593 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
8 rnss 5809 . . . . . . 7 (𝐹 ⊆ (ℂ × 𝑋) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
97, 8simpl2im 506 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
10 rnxpss 6029 . . . . . 6 ran (ℂ × 𝑋) ⊆ 𝑋
119, 10sstrdi 3979 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
1211adantlr 713 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
13 frn 6520 . . . . 5 (𝐹:ℕ⟶𝑌 → ran 𝐹𝑌)
1413ad2antlr 725 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑌)
1512, 14ssind 4209 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ (𝑋𝑌))
1615ex 415 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) → ran 𝐹 ⊆ (𝑋𝑌)))
17 xmetres 22974 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
18 caufpm 23885 . . . . . . . 8 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
1917, 18sylan 582 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
20 inex1g 5223 . . . . . . . . . 10 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
212, 20syl 17 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
22 elpmg 8422 . . . . . . . . 9 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2321, 3, 22sylancl 588 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2423biimpa 479 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
2519, 24syldan 593 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
26 rnss 5809 . . . . . 6 (𝐹 ⊆ (ℂ × (𝑋𝑌)) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
2725, 26simpl2im 506 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
28 rnxpss 6029 . . . . 5 ran (ℂ × (𝑋𝑌)) ⊆ (𝑋𝑌)
2927, 28sstrdi 3979 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ (𝑋𝑌))
3029ex 415 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
3130adantr 483 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
32 ffn 6514 . . . 4 (𝐹:ℕ⟶𝑌𝐹 Fn ℕ)
33 df-f 6359 . . . . 5 (𝐹:ℕ⟶(𝑋𝑌) ↔ (𝐹 Fn ℕ ∧ ran 𝐹 ⊆ (𝑋𝑌)))
3433simplbi2 503 . . . 4 (𝐹 Fn ℕ → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
3532, 34syl 17 . . 3 (𝐹:ℕ⟶𝑌 → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
36 inss2 4206 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑌
3736a1i 11 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑌)
38 fss 6527 . . . . . . . 8 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑌) → 𝐹:ℕ⟶𝑌)
3937, 38sylan2 594 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐹:ℕ⟶𝑌)
4039ancoms 461 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑌)
41 ffvelrn 6849 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (𝐹𝑦) ∈ 𝑌)
4241adantr 483 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ∈ 𝑌)
43 eluznn 12319 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ ℕ)
44 ffvelrn 6849 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑌𝑧 ∈ ℕ) → (𝐹𝑧) ∈ 𝑌)
4543, 44sylan2 594 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌 ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦))) → (𝐹𝑧) ∈ 𝑌)
4645anassrs 470 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ∈ 𝑌)
4742, 46ovresd 7315 . . . . . . . . . 10 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → ((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) = ((𝐹𝑦)𝐷(𝐹𝑧)))
4847breq1d 5076 . . . . . . . . 9 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
4948ralbidva 3196 . . . . . . . 8 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5049rexbidva 3296 . . . . . . 7 (𝐹:ℕ⟶𝑌 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5150ralbidv 3197 . . . . . 6 (𝐹:ℕ⟶𝑌 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5240, 51syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
53 nnuz 12282 . . . . . 6 ℕ = (ℤ‘1)
5417adantr 483 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
55 1zzd 12014 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 1 ∈ ℤ)
56 eqidd 2822 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = (𝐹𝑧))
57 eqidd 2822 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = (𝐹𝑦))
58 simpr 487 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶(𝑋𝑌))
5953, 54, 55, 56, 57, 58iscauf 23883 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥))
60 simpl 485 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐷 ∈ (∞Met‘𝑋))
61 id 22 . . . . . . 7 (𝐹:ℕ⟶(𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌))
62 inss1 4205 . . . . . . . 8 (𝑋𝑌) ⊆ 𝑋
6362a1i 11 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑋)
64 fss 6527 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑋) → 𝐹:ℕ⟶𝑋)
6561, 63, 64syl2anr 598 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑋)
6653, 60, 55, 56, 57, 65iscauf 23883 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
6752, 59, 663bitr4rd 314 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
6867ex 415 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹:ℕ⟶(𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
6935, 68sylan9r 511 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (ran 𝐹 ⊆ (𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
7016, 31, 69pm5.21ndd 383 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cin 3935  wss 3936   class class class wbr 5066   × cxp 5553  dom cdm 5555  ran crn 5556  cres 5557  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  pm cpm 8407  cc 10535  1c1 10538   < clt 10675  cn 11638  cuz 12244  +crp 12390  ∞Metcxmet 20530  Cauccau 23856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-z 11983  df-uz 12245  df-rp 12391  df-xneg 12508  df-xadd 12509  df-psmet 20537  df-xmet 20538  df-bl 20540  df-cau 23859
This theorem is referenced by:  minvecolem4a  28654  hhsscms  29055
  Copyright terms: Public domain W3C validator