MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  causs Structured version   Visualization version   GIF version

Theorem causs 25351
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
causs ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))

Proof of Theorem causs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caufpm 25335 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
2 elfvdm 6957 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 11265 . . . . . . . . . 10 ℂ ∈ V
4 elpmg 8901 . . . . . . . . . 10 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 585 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65biimpa 476 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
71, 6syldan 590 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
8 rnss 5964 . . . . . . 7 (𝐹 ⊆ (ℂ × 𝑋) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
97, 8simpl2im 503 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
10 rnxpss 6203 . . . . . 6 ran (ℂ × 𝑋) ⊆ 𝑋
119, 10sstrdi 4021 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
1211adantlr 714 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
13 frn 6754 . . . . 5 (𝐹:ℕ⟶𝑌 → ran 𝐹𝑌)
1413ad2antlr 726 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑌)
1512, 14ssind 4262 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ (𝑋𝑌))
1615ex 412 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) → ran 𝐹 ⊆ (𝑋𝑌)))
17 xmetres 24395 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
18 caufpm 25335 . . . . . . . 8 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
1917, 18sylan 579 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
20 inex1g 5337 . . . . . . . . . 10 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
212, 20syl 17 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
22 elpmg 8901 . . . . . . . . 9 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2321, 3, 22sylancl 585 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2423biimpa 476 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
2519, 24syldan 590 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
26 rnss 5964 . . . . . 6 (𝐹 ⊆ (ℂ × (𝑋𝑌)) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
2725, 26simpl2im 503 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
28 rnxpss 6203 . . . . 5 ran (ℂ × (𝑋𝑌)) ⊆ (𝑋𝑌)
2927, 28sstrdi 4021 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ (𝑋𝑌))
3029ex 412 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
3130adantr 480 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
32 ffn 6747 . . . 4 (𝐹:ℕ⟶𝑌𝐹 Fn ℕ)
33 df-f 6577 . . . . 5 (𝐹:ℕ⟶(𝑋𝑌) ↔ (𝐹 Fn ℕ ∧ ran 𝐹 ⊆ (𝑋𝑌)))
3433simplbi2 500 . . . 4 (𝐹 Fn ℕ → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
3532, 34syl 17 . . 3 (𝐹:ℕ⟶𝑌 → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
36 inss2 4259 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑌
3736a1i 11 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑌)
38 fss 6763 . . . . . . . 8 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑌) → 𝐹:ℕ⟶𝑌)
3937, 38sylan2 592 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐹:ℕ⟶𝑌)
4039ancoms 458 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑌)
41 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (𝐹𝑦) ∈ 𝑌)
4241adantr 480 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ∈ 𝑌)
43 eluznn 12983 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ ℕ)
44 ffvelcdm 7115 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑌𝑧 ∈ ℕ) → (𝐹𝑧) ∈ 𝑌)
4543, 44sylan2 592 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌 ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦))) → (𝐹𝑧) ∈ 𝑌)
4645anassrs 467 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ∈ 𝑌)
4742, 46ovresd 7617 . . . . . . . . . 10 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → ((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) = ((𝐹𝑦)𝐷(𝐹𝑧)))
4847breq1d 5176 . . . . . . . . 9 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
4948ralbidva 3182 . . . . . . . 8 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5049rexbidva 3183 . . . . . . 7 (𝐹:ℕ⟶𝑌 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5150ralbidv 3184 . . . . . 6 (𝐹:ℕ⟶𝑌 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5240, 51syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
53 nnuz 12946 . . . . . 6 ℕ = (ℤ‘1)
5417adantr 480 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
55 1zzd 12674 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 1 ∈ ℤ)
56 eqidd 2741 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = (𝐹𝑧))
57 eqidd 2741 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = (𝐹𝑦))
58 simpr 484 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶(𝑋𝑌))
5953, 54, 55, 56, 57, 58iscauf 25333 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥))
60 simpl 482 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐷 ∈ (∞Met‘𝑋))
61 id 22 . . . . . . 7 (𝐹:ℕ⟶(𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌))
62 inss1 4258 . . . . . . . 8 (𝑋𝑌) ⊆ 𝑋
6362a1i 11 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑋)
64 fss 6763 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑋) → 𝐹:ℕ⟶𝑋)
6561, 63, 64syl2anr 596 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑋)
6653, 60, 55, 56, 57, 65iscauf 25333 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
6752, 59, 663bitr4rd 312 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
6867ex 412 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹:ℕ⟶(𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
6935, 68sylan9r 508 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (ran 𝐹 ⊆ (𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
7016, 31, 69pm5.21ndd 379 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  pm cpm 8885  cc 11182  1c1 11185   < clt 11324  cn 12293  cuz 12903  +crp 13057  ∞Metcxmet 21372  Cauccau 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-z 12640  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-psmet 21379  df-xmet 21380  df-bl 21382  df-cau 25309
This theorem is referenced by:  minvecolem4a  30909  hhsscms  31310
  Copyright terms: Public domain W3C validator