MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  causs Structured version   Visualization version   GIF version

Theorem causs 25226
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
causs ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))

Proof of Theorem causs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caufpm 25210 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
2 elfvdm 6862 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 11094 . . . . . . . . . 10 ℂ ∈ V
4 elpmg 8773 . . . . . . . . . 10 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 586 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65biimpa 476 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
71, 6syldan 591 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
8 rnss 5883 . . . . . . 7 (𝐹 ⊆ (ℂ × 𝑋) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
97, 8simpl2im 503 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
10 rnxpss 6124 . . . . . 6 ran (ℂ × 𝑋) ⊆ 𝑋
119, 10sstrdi 3943 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
1211adantlr 715 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
13 frn 6663 . . . . 5 (𝐹:ℕ⟶𝑌 → ran 𝐹𝑌)
1413ad2antlr 727 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑌)
1512, 14ssind 4190 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ (𝑋𝑌))
1615ex 412 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) → ran 𝐹 ⊆ (𝑋𝑌)))
17 xmetres 24280 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
18 caufpm 25210 . . . . . . . 8 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
1917, 18sylan 580 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
20 inex1g 5259 . . . . . . . . . 10 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
212, 20syl 17 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
22 elpmg 8773 . . . . . . . . 9 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2321, 3, 22sylancl 586 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2423biimpa 476 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
2519, 24syldan 591 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
26 rnss 5883 . . . . . 6 (𝐹 ⊆ (ℂ × (𝑋𝑌)) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
2725, 26simpl2im 503 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
28 rnxpss 6124 . . . . 5 ran (ℂ × (𝑋𝑌)) ⊆ (𝑋𝑌)
2927, 28sstrdi 3943 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ (𝑋𝑌))
3029ex 412 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
3130adantr 480 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
32 ffn 6656 . . . 4 (𝐹:ℕ⟶𝑌𝐹 Fn ℕ)
33 df-f 6490 . . . . 5 (𝐹:ℕ⟶(𝑋𝑌) ↔ (𝐹 Fn ℕ ∧ ran 𝐹 ⊆ (𝑋𝑌)))
3433simplbi2 500 . . . 4 (𝐹 Fn ℕ → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
3532, 34syl 17 . . 3 (𝐹:ℕ⟶𝑌 → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
36 inss2 4187 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑌
3736a1i 11 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑌)
38 fss 6672 . . . . . . . 8 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑌) → 𝐹:ℕ⟶𝑌)
3937, 38sylan2 593 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐹:ℕ⟶𝑌)
4039ancoms 458 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑌)
41 ffvelcdm 7020 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (𝐹𝑦) ∈ 𝑌)
4241adantr 480 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ∈ 𝑌)
43 eluznn 12818 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ ℕ)
44 ffvelcdm 7020 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑌𝑧 ∈ ℕ) → (𝐹𝑧) ∈ 𝑌)
4543, 44sylan2 593 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌 ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦))) → (𝐹𝑧) ∈ 𝑌)
4645anassrs 467 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ∈ 𝑌)
4742, 46ovresd 7519 . . . . . . . . . 10 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → ((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) = ((𝐹𝑦)𝐷(𝐹𝑧)))
4847breq1d 5103 . . . . . . . . 9 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
4948ralbidva 3154 . . . . . . . 8 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5049rexbidva 3155 . . . . . . 7 (𝐹:ℕ⟶𝑌 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5150ralbidv 3156 . . . . . 6 (𝐹:ℕ⟶𝑌 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5240, 51syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
53 nnuz 12777 . . . . . 6 ℕ = (ℤ‘1)
5417adantr 480 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
55 1zzd 12509 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 1 ∈ ℤ)
56 eqidd 2734 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = (𝐹𝑧))
57 eqidd 2734 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = (𝐹𝑦))
58 simpr 484 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶(𝑋𝑌))
5953, 54, 55, 56, 57, 58iscauf 25208 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥))
60 simpl 482 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐷 ∈ (∞Met‘𝑋))
61 id 22 . . . . . . 7 (𝐹:ℕ⟶(𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌))
62 inss1 4186 . . . . . . . 8 (𝑋𝑌) ⊆ 𝑋
6362a1i 11 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑋)
64 fss 6672 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑋) → 𝐹:ℕ⟶𝑋)
6561, 63, 64syl2anr 597 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑋)
6653, 60, 55, 56, 57, 65iscauf 25208 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
6752, 59, 663bitr4rd 312 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
6867ex 412 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹:ℕ⟶(𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
6935, 68sylan9r 508 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (ran 𝐹 ⊆ (𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
7016, 31, 69pm5.21ndd 379 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cin 3897  wss 3898   class class class wbr 5093   × cxp 5617  dom cdm 5619  ran crn 5620  cres 5621  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  pm cpm 8757  cc 11011  1c1 11014   < clt 11153  cn 12132  cuz 12738  +crp 12892  ∞Metcxmet 21278  Cauccau 25181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-z 12476  df-uz 12739  df-rp 12893  df-xneg 13013  df-xadd 13014  df-psmet 21285  df-xmet 21286  df-bl 21288  df-cau 25184
This theorem is referenced by:  minvecolem4a  30859  hhsscms  31260
  Copyright terms: Public domain W3C validator