MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvitgv Structured version   Visualization version   GIF version

Theorem cbvitgv 25749
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
cbvitg.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvitgv 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvitgv
Dummy variables 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvitg.1 . . . . . . . . . 10 (𝑥 = 𝑦𝐵 = 𝐶)
21fvoveq1d 7435 . . . . . . . . 9 (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
3 eleq1w 2816 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43anbi1d 631 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦𝐴 ∧ 0 ≤ 𝑣)))
54ifbid 4529 . . . . . . . . 9 (𝑥 = 𝑦 → if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
62, 5csbeq12dv 3888 . . . . . . . 8 (𝑥 = 𝑦(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = (ℜ‘(𝐶 / (i↑𝑘))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
76cbvmptv 5235 . . . . . . 7 (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
87fveq2i 6889 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))
98oveq2i 7424 . . . . 5 ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
109a1i 11 . . . 4 (⊤ → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
1110sumeq2sdv 15722 . . 3 (⊤ → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
1211mptru 1546 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
13 df-itg 25595 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
14 df-itg 25595 . 2 𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1512, 13, 143eqtr4i 2767 1 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wtru 1540  wcel 2107  csb 3879  ifcif 4505   class class class wbr 5123  cmpt 5205  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  ici 11139   · cmul 11142  cle 11278   / cdiv 11902  3c3 12304  ...cfz 13529  cexp 14084  cre 15119  Σcsu 15705  2citg2 25588  citg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-xp 5671  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-iota 6494  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-seq 14025  df-sum 15706  df-itg 25595
This theorem is referenced by:  ftc1a  26015  tgoldbachgtd  34652  itgiccshift  45967  itgperiod  45968  dirkeritg  46089  fourierdlem73  46166  fourierdlem82  46175  fourierdlem93  46186  fourierdlem111  46204  fourierdlem112  46205
  Copyright terms: Public domain W3C validator