| Step | Hyp | Ref
| Expression |
| 1 | | cbvitg.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| 2 | 1 | fvoveq1d 7434 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 3 | | eleq1w 2816 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 4 | 3 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣))) |
| 5 | 4 | ifbid 4529 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 6 | 2, 5 | csbeq12dv 3888 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 7 | 6 | cbvmptv 5235 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦
⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 8 | 7 | fveq2i 6888 |
. . . . . 6
⊢
(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦
⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) |
| 9 | 8 | oveq2i 7423 |
. . . . 5
⊢
((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 10 | 9 | a1i 11 |
. . . 4
⊢ (⊤
→ ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))) |
| 11 | 10 | sumeq2sdv 15720 |
. . 3
⊢ (⊤
→ Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))) |
| 12 | 11 | mptru 1546 |
. 2
⊢
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 13 | | df-itg 25593 |
. 2
⊢
∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 14 | | df-itg 25593 |
. 2
⊢
∫𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 15 | 12, 13, 14 | 3eqtr4i 2767 |
1
⊢
∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 |