Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkeritg Structured version   Visualization version   GIF version

Theorem dirkeritg 42394
Description: The definite integral of the Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkeritg.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))))
dirkeritg.n (𝜑𝑁 ∈ ℕ)
dirkeritg.f 𝐹 = (𝐷𝑁)
dirkeritg.a (𝜑𝐴 ∈ ℝ)
dirkeritg.b (𝜑𝐵 ∈ ℝ)
dirkeritg.aleb (𝜑𝐴𝐵)
dirkeritg.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π))
Assertion
Ref Expression
dirkeritg (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐹   𝑘,𝑁,𝑥   𝜑,𝑘   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑘,𝑛)   𝑁(𝑛)

Proof of Theorem dirkeritg
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . 4 (𝑥 = 𝑠 → (𝐹𝑥) = (𝐹𝑠))
21cbvitgv 24379 . . 3 ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠
32a1i 11 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠)
4 elioore 12771 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
54adantl 484 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6 halfre 11854 . . . . . . . . 9 (1 / 2) ∈ ℝ
76a1i 11 . . . . . . . 8 (𝑠 ∈ ℝ → (1 / 2) ∈ ℝ)
8 fzfid 13344 . . . . . . . . 9 (𝑠 ∈ ℝ → (1...𝑁) ∈ Fin)
9 elfzelz 12911 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
109zred 12090 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℝ)
1110adantl 484 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
12 simpl 485 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
1311, 12remulcld 10673 . . . . . . . . . 10 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ)
1413recoscld 15499 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
158, 14fsumrecl 15093 . . . . . . . 8 (𝑠 ∈ ℝ → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
167, 15readdcld 10672 . . . . . . 7 (𝑠 ∈ ℝ → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
17 pire 25046 . . . . . . . 8 π ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑠 ∈ ℝ → π ∈ ℝ)
19 pipos 25048 . . . . . . . . 9 0 < π
2017, 19gt0ne0ii 11178 . . . . . . . 8 π ≠ 0
2120a1i 11 . . . . . . 7 (𝑠 ∈ ℝ → π ≠ 0)
2216, 18, 21redivcld 11470 . . . . . 6 (𝑠 ∈ ℝ → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
235, 22syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
24 eqid 2823 . . . . . 6 (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
2524fvmpt2 6781 . . . . 5 ((𝑠 ∈ ℝ ∧ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) → ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
265, 23, 25syl2anc 586 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
27 dirkeritg.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))))
28 oveq1 7165 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (𝑥 mod (2 · π)) = (𝑠 mod (2 · π)))
2928eqeq1d 2825 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((𝑥 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) = 0))
30 oveq2 7166 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑛 + (1 / 2)) · 𝑥) = ((𝑛 + (1 / 2)) · 𝑠))
3130fveq2d 6676 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (sin‘((𝑛 + (1 / 2)) · 𝑥)) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
32 oveq1 7165 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2))
3332fveq2d 6676 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2)))
3433oveq2d 7174 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((2 · π) · (sin‘(𝑥 / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
3531, 34oveq12d 7176 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
3629, 35ifbieq2d 4494 . . . . . . . . . 10 (𝑥 = 𝑠 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
3736cbvmptv 5171 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
3837mpteq2i 5160 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))) = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
3927, 38eqtri 2846 . . . . . . 7 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
40 dirkeritg.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
41 dirkeritg.f . . . . . . 7 𝐹 = (𝐷𝑁)
4239, 40, 41, 24dirkertrigeq 42393 . . . . . 6 (𝜑𝐹 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
4342fveq1d 6674 . . . . 5 (𝜑 → (𝐹𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠))
4443adantr 483 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠))
45 dirkeritg.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π))
46 oveq2 7166 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑘 · 𝑥) = (𝑘 · 𝑠))
4746fveq2d 6676 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑘 · 𝑠)))
4847oveq1d 7173 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((sin‘(𝑘 · 𝑥)) / 𝑘) = ((sin‘(𝑘 · 𝑠)) / 𝑘))
4948sumeq2sdv 15063 . . . . . . . . . . 11 (𝑥 = 𝑠 → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘) = Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))
5032, 49oveq12d 7176 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) = ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))
5150oveq1d 7173 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π) = (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5251cbvmptv 5171 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5345, 52eqtri 2846 . . . . . . 7 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5453oveq2i 7169 . . . . . 6 (ℝ D 𝐺) = (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)))
55 reelprrecn 10631 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
57 recn 10629 . . . . . . . . . . 11 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5857halfcld 11885 . . . . . . . . . 10 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
599zcnd 12091 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
6059adantl 484 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
6157adantr 483 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
6260, 61mulcld 10663 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ)
6362sincld 15485 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
64 0red 10646 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 0 ∈ ℝ)
65 1red 10644 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 1 ∈ ℝ)
66 0lt1 11164 . . . . . . . . . . . . . . . 16 0 < 1
6766a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 0 < 1)
68 elfzle1 12913 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 1 ≤ 𝑘)
6964, 65, 10, 67, 68ltletrd 10802 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → 0 < 𝑘)
7069gt0ne0d 11206 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
7170adantl 484 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
7263, 60, 71divcld 11418 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
738, 72fsumcl 15092 . . . . . . . . . 10 (𝑠 ∈ ℝ → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
7458, 73addcld 10662 . . . . . . . . 9 (𝑠 ∈ ℝ → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ)
75 picn 25047 . . . . . . . . . 10 π ∈ ℂ
7675a1i 11 . . . . . . . . 9 (𝑠 ∈ ℝ → π ∈ ℂ)
7774, 76, 21divcld 11418 . . . . . . . 8 (𝑠 ∈ ℝ → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ)
7877adantl 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ)
7922adantl 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
8074adantl 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ)
8116adantl 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
8258adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → (𝑠 / 2) ∈ ℂ)
836a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → (1 / 2) ∈ ℝ)
8457adantl 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
85 1red 10644 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
8656dvmptid 24556 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
87 2cnd 11718 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
88 2ne0 11744 . . . . . . . . . . 11 2 ≠ 0
8988a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
9056, 84, 85, 86, 87, 89dvmptdivc 24564 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (𝑠 / 2))) = (𝑠 ∈ ℝ ↦ (1 / 2)))
9173adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
9215adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
93 eqid 2823 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9493tgioo2 23413 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
95 reopn 41562 . . . . . . . . . . 11 ℝ ∈ (topGen‘ran (,))
9695a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ (topGen‘ran (,)))
97 fzfid 13344 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
9872ancoms 461 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
99983adant1 1126 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
10014ancoms 461 . . . . . . . . . . . 12 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
101100recnd 10671 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
1021013adant1 1126 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
10355a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → ℝ ∈ {ℝ, ℂ})
10463ancoms 461 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
10559adantr 483 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑘 ∈ ℂ)
106 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
107105, 106mulcld 10663 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · 𝑠) ∈ ℂ)
108107coscld 15486 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
109105, 108mulcld 10663 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
11057, 109sylan2 594 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
111 ax-resscn 10596 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
112 resmpt 5907 . . . . . . . . . . . . . . . . 17 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))))
113111, 112mp1i 13 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))))
114113eqcomd 2829 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))) = ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ))
115114oveq2d 7174 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)))
116107sincld 15485 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
117116fmpttd 6881 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ)
118109ralrimiva 3184 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑁) → ∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
119 dmmptg 6098 . . . . . . . . . . . . . . . . . 18 (∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ)
120118, 119syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ)
121111, 120sseqtrrid 4022 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
122 dvsinax 42204 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℂ → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
12359, 122syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
124123dmeqd 5776 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
125121, 124sseqtrrd 4010 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))))
126 dvcnre 42207 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ))
127117, 125, 126syl2anc 586 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ))
128123reseq1d 5854 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ))
129 resmpt 5907 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
130111, 129ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))
131128, 130syl6eq 2874 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
132115, 127, 1313eqtrd 2862 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
133103, 104, 110, 132, 59, 70dvmptdivc 24564 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)))
13459adantr 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ∈ ℂ)
13570adantr 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ≠ 0)
136101, 134, 135divcan3d 11423 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘) = (cos‘(𝑘 · 𝑠)))
137136mpteq2dva 5163 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
138133, 137eqtrd 2858 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
139138adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁)) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
14094, 93, 56, 96, 97, 99, 102, 139dvmptfsum 24574 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))))
14156, 82, 83, 90, 91, 92, 140dvmptadd 24559 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))) = (𝑠 ∈ ℝ ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))))
14275a1i 11 . . . . . . . 8 (𝜑 → π ∈ ℂ)
14320a1i 11 . . . . . . . 8 (𝜑 → π ≠ 0)
14456, 80, 81, 141, 142, 143dvmptdivc 24564 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
145 dirkeritg.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
146 dirkeritg.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
147145, 146iccssred 41787 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
148 iccntr 23431 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
149145, 146, 148syl2anc 586 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
15056, 78, 79, 144, 147, 94, 93, 149dvmptres2 24561 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
15154, 150syl5eq 2870 . . . . 5 (𝜑 → (ℝ D 𝐺) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
152151, 23fvmpt2d 6783 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
15326, 44, 1523eqtr4d 2868 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹𝑠) = ((ℝ D 𝐺)‘𝑠))
154153itgeq2dv 24384 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠)
155 dirkeritg.aleb . . 3 (𝜑𝐴𝐵)
156 ioosscn 41776 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℂ
157156a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
158 halfcn 11855 . . . . . . . 8 (1 / 2) ∈ ℂ
159158a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
160 ssid 3991 . . . . . . . 8 ℂ ⊆ ℂ
161160a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
162157, 159, 161constcncfg 42161 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
163 eqid 2823 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠)))
164 coscn 25035 . . . . . . . . . . 11 cos ∈ (ℂ–cn→ℂ)
165164a1i 11 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → cos ∈ (ℂ–cn→ℂ))
166 eqid 2823 . . . . . . . . . . . 12 (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠))
167166mulc1cncf 23515 . . . . . . . . . . 11 (𝑘 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ))
16859, 167syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ))
169165, 168cncfmpt1f 23523 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
170156a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴(,)𝐵) ⊆ ℂ)
171160a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ℂ ⊆ ℂ)
1724, 101sylan2 594 . . . . . . . . 9 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
173163, 169, 170, 171, 172cncfmptssg 42160 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
174173adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
175157, 97, 174fsumcncf 42168 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
176162, 175addcncf 42163 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
177 eqid 2823 . . . . . 6 (𝑠 ∈ ℂ ↦ π) = (𝑠 ∈ ℂ ↦ π)
178 cncfmptc 23521 . . . . . . . 8 ((π ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ))
17975, 160, 160, 178mp3an 1457 . . . . . . 7 (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ)
180179a1i 11 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ))
181 difssd 4111 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
182 eldifsn 4721 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
18375, 20, 182mpbir2an 709 . . . . . . 7 π ∈ (ℂ ∖ {0})
184183a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ (ℂ ∖ {0}))
185177, 180, 157, 181, 184cncfmptssg 42160 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
186176, 185divcncf 24050 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
187151, 186eqeltrd 2915 . . 3 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
188 ioossicc 12825 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
189188a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
190 ioombl 24168 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
191190a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
1926a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (1 / 2) ∈ ℝ)
193 fzfid 13344 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (1...𝑁) ∈ Fin)
19410adantl 484 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
195147sselda 3969 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
196195adantr 483 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
197194, 196remulcld 10673 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ)
198197recoscld 15499 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
199193, 198fsumrecl 15093 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
200192, 199readdcld 10672 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
20117a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → π ∈ ℝ)
20220a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → π ≠ 0)
203200, 201, 202redivcld 11470 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
204147, 111sstrdi 3981 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
205204, 159, 161constcncfg 42161 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (1 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
206 eqid 2823 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))
207169adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
208161, 97, 207fsumcncf 42168 . . . . . . . . 9 (𝜑 → (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
209199recnd 10671 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℂ)
210206, 208, 204, 161, 209cncfmptssg 42160 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
211205, 210addcncf 42163 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
212183a1i 11 . . . . . . . 8 (𝜑 → π ∈ (ℂ ∖ {0}))
213204, 212, 181constcncfg 42161 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ π) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
214211, 213divcncf 24050 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
215 cniccibl 24443 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
216145, 146, 214, 215syl3anc 1367 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
217189, 191, 203, 216iblss 24407 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
218151, 217eqeltrd 2915 . . 3 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
219204, 161idcncfg 42162 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑠) ∈ ((𝐴[,]𝐵)–cn→ℂ))
220 2cn 11715 . . . . . . . . . 10 2 ∈ ℂ
221 eldifsn 4721 . . . . . . . . . 10 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
222220, 88, 221mpbir2an 709 . . . . . . . . 9 2 ∈ (ℂ ∖ {0})
223222a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ (ℂ ∖ {0}))
224204, 223, 181constcncfg 42161 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
225219, 224divcncf 24050 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (𝑠 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
226 eqid 2823 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))
227 sincn 25034 . . . . . . . . . . . 12 sin ∈ (ℂ–cn→ℂ)
228227a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → sin ∈ (ℂ–cn→ℂ))
229228, 168cncfmpt1f 23523 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
230229adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
231204adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐴[,]𝐵) ⊆ ℂ)
232160a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → ℂ ⊆ ℂ)
23359ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑘 ∈ ℂ)
234195recnd 10671 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
235234adantlr 713 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
236233, 235mulcld 10663 . . . . . . . . . 10 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑘 · 𝑠) ∈ ℂ)
237236sincld 15485 . . . . . . . . 9 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
238226, 230, 231, 232, 237cncfmptssg 42160 . . . . . . . 8 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
239 eldifsn 4721 . . . . . . . . . . 11 (𝑘 ∈ (ℂ ∖ {0}) ↔ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
24059, 70, 239sylanbrc 585 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ (ℂ ∖ {0}))
241240adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (ℂ ∖ {0}))
242 difssd 4111 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (ℂ ∖ {0}) ⊆ ℂ)
243231, 241, 242constcncfg 42161 . . . . . . . 8 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
244238, 243divcncf 24050 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
245204, 97, 244fsumcncf 42168 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
246225, 245addcncf 42163 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
247246, 213divcncf 24050 . . . 4 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
24853, 247eqeltrid 2919 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
249145, 146, 155, 187, 218, 248ftc2 24643 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠 = ((𝐺𝐵) − (𝐺𝐴)))
2503, 154, 2493eqtrd 2862 1 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  cdif 3935  wss 3938  ifcif 4469  {csn 4569  {cpr 4571   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  (,)cioo 12741  [,]cicc 12744  ...cfz 12895   mod cmo 13240  Σcsu 15044  sincsin 15419  cosccos 15420  πcpi 15422  TopOpenctopn 16697  topGenctg 16713  fldccnfld 20547  intcnt 21627  cnccncf 23486  volcvol 24066  𝐿1cibl 24220  citg 24221   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-symdif 4221  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224  df-ibl 24225  df-itg 24226  df-0p 24273  df-limc 24466  df-dv 24467
This theorem is referenced by:  fourierdlem103  42501  fourierdlem104  42502
  Copyright terms: Public domain W3C validator