Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = 𝑠 → (𝐹‘𝑥) = (𝐹‘𝑠)) |
2 | 1 | cbvitgv 24941 |
. . 3
⊢
∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹‘𝑠) d𝑠 |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹‘𝑠) d𝑠) |
4 | | elioore 13109 |
. . . . . 6
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) |
5 | 4 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
6 | | halfre 12187 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
7 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝑠 ∈ ℝ → (1 / 2)
∈ ℝ) |
8 | | fzfid 13693 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℝ →
(1...𝑁) ∈
Fin) |
9 | | elfzelz 13256 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ) |
10 | 9 | zred 12426 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℝ) |
11 | 10 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ) |
12 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ) |
13 | 11, 12 | remulcld 11005 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ) |
14 | 13 | recoscld 15853 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ) |
15 | 8, 14 | fsumrecl 15446 |
. . . . . . . 8
⊢ (𝑠 ∈ ℝ →
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ) |
16 | 7, 15 | readdcld 11004 |
. . . . . . 7
⊢ (𝑠 ∈ ℝ → ((1 / 2)
+ Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ) |
17 | | pire 25615 |
. . . . . . . 8
⊢ π
∈ ℝ |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝑠 ∈ ℝ → π
∈ ℝ) |
19 | | pipos 25617 |
. . . . . . . . 9
⊢ 0 <
π |
20 | 17, 19 | gt0ne0ii 11511 |
. . . . . . . 8
⊢ π ≠
0 |
21 | 20 | a1i 11 |
. . . . . . 7
⊢ (𝑠 ∈ ℝ → π ≠
0) |
22 | 16, 18, 21 | redivcld 11803 |
. . . . . 6
⊢ (𝑠 ∈ ℝ → (((1 / 2)
+ Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) |
23 | 5, 22 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) |
24 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ ℝ ↦ (((1 /
2) + Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) |
25 | 24 | fvmpt2 6886 |
. . . . 5
⊢ ((𝑠 ∈ ℝ ∧ (((1 / 2)
+ Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) → ((𝑠 ∈ ℝ ↦ (((1 /
2) + Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) |
26 | 5, 23, 25 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) |
27 | | dirkeritg.d |
. . . . . . . 8
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) ·
(sin‘(𝑥 /
2))))))) |
28 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → (𝑥 mod (2 · π)) = (𝑠 mod (2 · π))) |
29 | 28 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → ((𝑥 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) =
0)) |
30 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → ((𝑛 + (1 / 2)) · 𝑥) = ((𝑛 + (1 / 2)) · 𝑠)) |
31 | 30 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → (sin‘((𝑛 + (1 / 2)) · 𝑥)) = (sin‘((𝑛 + (1 / 2)) · 𝑠))) |
32 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2)) |
33 | 32 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2))) |
34 | 33 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → ((2 · π) ·
(sin‘(𝑥 / 2))) = ((2
· π) · (sin‘(𝑠 / 2)))) |
35 | 31, 34 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) ·
(sin‘(𝑥 / 2)))) =
((sin‘((𝑛 + (1 / 2))
· 𝑠)) / ((2 ·
π) · (sin‘(𝑠 / 2))))) |
36 | 29, 35 | ifbieq2d 4485 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → if((𝑥 mod (2 · π)) = 0, (((2 ·
𝑛) + 1) / (2 ·
π)), ((sin‘((𝑛 +
(1 / 2)) · 𝑥)) / ((2
· π) · (sin‘(𝑥 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 ·
𝑛) + 1) / (2 ·
π)), ((sin‘((𝑛 +
(1 / 2)) · 𝑠)) / ((2
· π) · (sin‘(𝑠 / 2)))))) |
37 | 36 | cbvmptv 5187 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 mod (2 ·
π)) = 0, (((2 · 𝑛) + 1) / (2 · π)),
((sin‘((𝑛 + (1 / 2))
· 𝑥)) / ((2 ·
π) · (sin‘(𝑥 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2)))))) |
38 | 37 | mpteq2i 5179 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝑥 mod (2 ·
π)) = 0, (((2 · 𝑛) + 1) / (2 · π)),
((sin‘((𝑛 + (1 / 2))
· 𝑥)) / ((2 ·
π) · (sin‘(𝑥 / 2))))))) = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2))))))) |
39 | 27, 38 | eqtri 2766 |
. . . . . . 7
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2))))))) |
40 | | dirkeritg.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
41 | | dirkeritg.f |
. . . . . . 7
⊢ 𝐹 = (𝐷‘𝑁) |
42 | 39, 40, 41, 24 | dirkertrigeq 43642 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))) |
43 | 42 | fveq1d 6776 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠)) |
44 | 43 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠)) |
45 | | dirkeritg.g |
. . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) |
46 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → (𝑘 · 𝑥) = (𝑘 · 𝑠)) |
47 | 46 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑘 · 𝑠))) |
48 | 47 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → ((sin‘(𝑘 · 𝑥)) / 𝑘) = ((sin‘(𝑘 · 𝑠)) / 𝑘)) |
49 | 48 | sumeq2sdv 15416 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘) = Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) |
50 | 32, 49 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → ((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) = ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) |
51 | 50 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π) = (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) |
52 | 51 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) |
53 | 45, 52 | eqtri 2766 |
. . . . . . 7
⊢ 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) |
54 | 53 | oveq2i 7286 |
. . . . . 6
⊢ (ℝ
D 𝐺) = (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) |
55 | | reelprrecn 10963 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
56 | 55 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
57 | | recn 10961 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℝ → 𝑠 ∈
ℂ) |
58 | 57 | halfcld 12218 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ → (𝑠 / 2) ∈
ℂ) |
59 | 9 | zcnd 12427 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ) |
60 | 59 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) |
61 | 57 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ) |
62 | 60, 61 | mulcld 10995 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ) |
63 | 62 | sincld 15839 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ) |
64 | | 0red 10978 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 0 ∈ ℝ) |
65 | | 1red 10976 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 1 ∈ ℝ) |
66 | | 0lt1 11497 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
1 |
67 | 66 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 0 < 1) |
68 | | elfzle1 13259 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 1 ≤ 𝑘) |
69 | 64, 65, 10, 67, 68 | ltletrd 11135 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑁) → 0 < 𝑘) |
70 | 69 | gt0ne0d 11539 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0) |
71 | 70 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0) |
72 | 63, 60, 71 | divcld 11751 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
73 | 8, 72 | fsumcl 15445 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ →
Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
74 | 58, 73 | addcld 10994 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℝ → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ) |
75 | | picn 25616 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
76 | 75 | a1i 11 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℝ → π
∈ ℂ) |
77 | 74, 76, 21 | divcld 11751 |
. . . . . . . 8
⊢ (𝑠 ∈ ℝ → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ) |
78 | 77 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ) |
79 | 22 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) |
80 | 74 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ) |
81 | 16 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ) |
82 | 58 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑠 / 2) ∈ ℂ) |
83 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (1 / 2) ∈
ℝ) |
84 | 57 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℂ) |
85 | | 1red 10976 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 1 ∈
ℝ) |
86 | 56 | dvmptid 25121 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1)) |
87 | | 2cnd 12051 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℂ) |
88 | | 2ne0 12077 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
89 | 88 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ≠ 0) |
90 | 56, 84, 85, 86, 87, 89 | dvmptdivc 25129 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (𝑠 / 2))) = (𝑠 ∈ ℝ ↦ (1 /
2))) |
91 | 73 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
92 | 15 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ) |
93 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
94 | 93 | tgioo2 23966 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
95 | | reopn 42828 |
. . . . . . . . . . 11
⊢ ℝ
∈ (topGen‘ran (,)) |
96 | 95 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
(topGen‘ran (,))) |
97 | | fzfid 13693 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
98 | 72 | ancoms 459 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
99 | 98 | 3adant1 1129 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
100 | 14 | ancoms 459 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℝ) |
101 | 100 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ) |
102 | 101 | 3adant1 1129 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ) |
103 | 55 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑁) → ℝ ∈ {ℝ,
ℂ}) |
104 | 63 | ancoms 459 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ) |
105 | 59 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑘 ∈ ℂ) |
106 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) |
107 | 105, 106 | mulcld 10995 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · 𝑠) ∈ ℂ) |
108 | 107 | coscld 15840 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ) |
109 | 105, 108 | mulcld 10995 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ) |
110 | 57, 109 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ) |
111 | | ax-resscn 10928 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
⊆ ℂ |
112 | | resmpt 5945 |
. . . . . . . . . . . . . . . . 17
⊢ (ℝ
⊆ ℂ → ((𝑠
∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) |
113 | 111, 112 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...𝑁) → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) |
114 | 113 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))) = ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) |
115 | 114 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ))) |
116 | 107 | sincld 15839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ) |
117 | 116 | fmpttd 6989 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ) |
118 | 109 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1...𝑁) → ∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ) |
119 | | dmmptg 6145 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑠 ∈
ℂ (𝑘 ·
(cos‘(𝑘 ·
𝑠))) ∈ ℂ →
dom (𝑠 ∈ ℂ
↦ (𝑘 ·
(cos‘(𝑘 ·
𝑠)))) =
ℂ) |
120 | 118, 119 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (1...𝑁) → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ) |
121 | 111, 120 | sseqtrrid 3974 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
122 | | dvsinax 43454 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℂ → (ℂ
D (𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
123 | 59, 122 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (1...𝑁) → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
124 | 123 | dmeqd 5814 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...𝑁) → dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
125 | 121, 124 | sseqtrrd 3962 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (ℂ D
(𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠))))) |
126 | | dvcnre 43457 |
. . . . . . . . . . . . . . 15
⊢ (((𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠))):ℂ⟶ℂ
∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠)))) ↾
ℝ)) |
127 | 117, 125,
126 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠)))) ↾
ℝ)) |
128 | 123 | reseq1d 5890 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ)) |
129 | | resmpt 5945 |
. . . . . . . . . . . . . . . 16
⊢ (ℝ
⊆ ℂ → ((𝑠
∈ ℂ ↦ (𝑘
· (cos‘(𝑘
· 𝑠)))) ↾
ℝ) = (𝑠 ∈
ℝ ↦ (𝑘 ·
(cos‘(𝑘 ·
𝑠))))) |
130 | 111, 129 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) |
131 | 128, 130 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
132 | 115, 127,
131 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
133 | 103, 104,
110, 132, 59, 70 | dvmptdivc 25129 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘))) |
134 | 59 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ∈ ℂ) |
135 | 70 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ≠ 0) |
136 | 101, 134,
135 | divcan3d 11756 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘) = (cos‘(𝑘 · 𝑠))) |
137 | 136 | mpteq2dva 5174 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠)))) |
138 | 133, 137 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠)))) |
139 | 138 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠)))) |
140 | 94, 93, 56, 96, 97, 99, 102, 139 | dvmptfsum 25139 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦
Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) |
141 | 56, 82, 83, 90, 91, 92, 140 | dvmptadd 25124 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))) = (𝑠 ∈ ℝ ↦ ((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))))) |
142 | 75 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → π ∈
ℂ) |
143 | 20 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → π ≠
0) |
144 | 56, 80, 81, 141, 142, 143 | dvmptdivc 25129 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))) |
145 | | dirkeritg.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
146 | | dirkeritg.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
147 | 145, 146 | iccssred 13166 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
148 | | iccntr 23984 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
149 | 145, 146,
148 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
150 | 56, 78, 79, 144, 147, 94, 93, 149 | dvmptres2 25126 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))) |
151 | 54, 150 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → (ℝ D 𝐺) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))) |
152 | 151, 23 | fvmpt2d 6888 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) |
153 | 26, 44, 152 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑠) = ((ℝ D 𝐺)‘𝑠)) |
154 | 153 | itgeq2dv 24946 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑠) d𝑠 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠) |
155 | | dirkeritg.aleb |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
156 | | ioosscn 13141 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℂ |
157 | 156 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
158 | | halfcn 12188 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℂ |
159 | 158 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
160 | | ssid 3943 |
. . . . . . . 8
⊢ ℂ
⊆ ℂ |
161 | 160 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
162 | 157, 159,
161 | constcncfg 43413 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
163 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℂ ↦
(cos‘(𝑘 ·
𝑠))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) |
164 | | coscn 25604 |
. . . . . . . . . . 11
⊢ cos
∈ (ℂ–cn→ℂ) |
165 | 164 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → cos ∈ (ℂ–cn→ℂ)) |
166 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) |
167 | 166 | mulc1cncf 24068 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ)) |
168 | 59, 167 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ)) |
169 | 165, 168 | cncfmpt1f 24077 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
170 | 156 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → (𝐴(,)𝐵) ⊆ ℂ) |
171 | 160 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → ℂ ⊆
ℂ) |
172 | 4, 101 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑘 · 𝑠)) ∈ ℂ) |
173 | 163, 169,
170, 171, 172 | cncfmptssg 43412 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
174 | 173 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
175 | 157, 97, 174 | fsumcncf 43419 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
176 | 162, 175 | addcncf 24608 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
177 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ ℂ ↦ π) =
(𝑠 ∈ ℂ ↦
π) |
178 | | cncfmptc 24075 |
. . . . . . . 8
⊢ ((π
∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ)
→ (𝑠 ∈ ℂ
↦ π) ∈ (ℂ–cn→ℂ)) |
179 | 75, 160, 160, 178 | mp3an 1460 |
. . . . . . 7
⊢ (𝑠 ∈ ℂ ↦ π)
∈ (ℂ–cn→ℂ) |
180 | 179 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ π) ∈
(ℂ–cn→ℂ)) |
181 | | difssd 4067 |
. . . . . 6
⊢ (𝜑 → (ℂ ∖ {0})
⊆ ℂ) |
182 | | eldifsn 4720 |
. . . . . . . 8
⊢ (π
∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠
0)) |
183 | 75, 20, 182 | mpbir2an 708 |
. . . . . . 7
⊢ π
∈ (ℂ ∖ {0}) |
184 | 183 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → π ∈ (ℂ ∖
{0})) |
185 | 177, 180,
157, 181, 184 | cncfmptssg 43412 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0}))) |
186 | 176, 185 | divcncf 24611 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
187 | 151, 186 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
188 | | ioossicc 13165 |
. . . . . 6
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
189 | 188 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
190 | | ioombl 24729 |
. . . . . 6
⊢ (𝐴(,)𝐵) ∈ dom vol |
191 | 190 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
192 | 6 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (1 / 2) ∈
ℝ) |
193 | | fzfid 13693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (1...𝑁) ∈ Fin) |
194 | 10 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ) |
195 | 147 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ) |
196 | 195 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ) |
197 | 194, 196 | remulcld 11005 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ) |
198 | 197 | recoscld 15853 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ) |
199 | 193, 198 | fsumrecl 15446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ) |
200 | 192, 199 | readdcld 11004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ) |
201 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → π ∈
ℝ) |
202 | 20 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → π ≠ 0) |
203 | 200, 201,
202 | redivcld 11803 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) |
204 | 147, 111 | sstrdi 3933 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
205 | 204, 159,
161 | constcncfg 43413 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (1 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
206 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℂ ↦
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) |
207 | 169 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
208 | 161, 97, 207 | fsumcncf 43419 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
209 | 199 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℂ) |
210 | 206, 208,
204, 161, 209 | cncfmptssg 43412 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
211 | 205, 210 | addcncf 24608 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
212 | 183 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → π ∈ (ℂ
∖ {0})) |
213 | 204, 212,
181 | constcncfg 43413 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ π) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0}))) |
214 | 211, 213 | divcncf 24611 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
215 | | cniccibl 25005 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈
𝐿1) |
216 | 145, 146,
214, 215 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈
𝐿1) |
217 | 189, 191,
203, 216 | iblss 24969 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈
𝐿1) |
218 | 151, 217 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (ℝ D 𝐺) ∈
𝐿1) |
219 | 204, 161 | idcncfg 43414 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑠) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
220 | | 2cn 12048 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
221 | | eldifsn 4720 |
. . . . . . . . . 10
⊢ (2 ∈
(ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠
0)) |
222 | 220, 88, 221 | mpbir2an 708 |
. . . . . . . . 9
⊢ 2 ∈
(ℂ ∖ {0}) |
223 | 222 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈ (ℂ ∖
{0})) |
224 | 204, 223,
181 | constcncfg 43413 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0}))) |
225 | 219, 224 | divcncf 24611 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (𝑠 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
226 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠))) = (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) |
227 | | sincn 25603 |
. . . . . . . . . . . 12
⊢ sin
∈ (ℂ–cn→ℂ) |
228 | 227 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑁) → sin ∈ (ℂ–cn→ℂ)) |
229 | 228, 168 | cncfmpt1f 24077 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
230 | 229 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
231 | 204 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝐴[,]𝐵) ⊆ ℂ) |
232 | 160 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → ℂ ⊆
ℂ) |
233 | 59 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑘 ∈ ℂ) |
234 | 195 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ) |
235 | 234 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ) |
236 | 233, 235 | mulcld 10995 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑘 · 𝑠) ∈ ℂ) |
237 | 236 | sincld 15839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ) |
238 | 226, 230,
231, 232, 237 | cncfmptssg 43412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
239 | | eldifsn 4720 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (ℂ ∖ {0})
↔ (𝑘 ∈ ℂ
∧ 𝑘 ≠
0)) |
240 | 59, 70, 239 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ (ℂ ∖
{0})) |
241 | 240 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (ℂ ∖
{0})) |
242 | | difssd 4067 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (ℂ ∖ {0}) ⊆
ℂ) |
243 | 231, 241,
242 | constcncfg 43413 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0}))) |
244 | 238, 243 | divcncf 24611 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
245 | 204, 97, 244 | fsumcncf 43419 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
246 | 225, 245 | addcncf 24608 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
247 | 246, 213 | divcncf 24611 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
248 | 53, 247 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
249 | 145, 146,
155, 187, 218, 248 | ftc2 25208 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠 = ((𝐺‘𝐵) − (𝐺‘𝐴))) |
250 | 3, 154, 249 | 3eqtrd 2782 |
1
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ((𝐺‘𝐵) − (𝐺‘𝐴))) |