Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkeritg Structured version   Visualization version   GIF version

Theorem dirkeritg 42372
Description: The definite integral of the Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkeritg.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))))
dirkeritg.n (𝜑𝑁 ∈ ℕ)
dirkeritg.f 𝐹 = (𝐷𝑁)
dirkeritg.a (𝜑𝐴 ∈ ℝ)
dirkeritg.b (𝜑𝐵 ∈ ℝ)
dirkeritg.aleb (𝜑𝐴𝐵)
dirkeritg.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π))
Assertion
Ref Expression
dirkeritg (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐹   𝑘,𝑁,𝑥   𝜑,𝑘   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑘,𝑛)   𝑁(𝑛)

Proof of Theorem dirkeritg
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . 4 (𝑥 = 𝑠 → (𝐹𝑥) = (𝐹𝑠))
21cbvitgv 24369 . . 3 ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠
32a1i 11 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠)
4 elioore 12760 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
54adantl 484 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6 halfre 11843 . . . . . . . . 9 (1 / 2) ∈ ℝ
76a1i 11 . . . . . . . 8 (𝑠 ∈ ℝ → (1 / 2) ∈ ℝ)
8 fzfid 13333 . . . . . . . . 9 (𝑠 ∈ ℝ → (1...𝑁) ∈ Fin)
9 elfzelz 12900 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
109zred 12079 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℝ)
1110adantl 484 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
12 simpl 485 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
1311, 12remulcld 10663 . . . . . . . . . 10 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ)
1413recoscld 15489 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
158, 14fsumrecl 15083 . . . . . . . 8 (𝑠 ∈ ℝ → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
167, 15readdcld 10662 . . . . . . 7 (𝑠 ∈ ℝ → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
17 pire 25036 . . . . . . . 8 π ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑠 ∈ ℝ → π ∈ ℝ)
19 pipos 25038 . . . . . . . . 9 0 < π
2017, 19gt0ne0ii 11168 . . . . . . . 8 π ≠ 0
2120a1i 11 . . . . . . 7 (𝑠 ∈ ℝ → π ≠ 0)
2216, 18, 21redivcld 11460 . . . . . 6 (𝑠 ∈ ℝ → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
235, 22syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
24 eqid 2819 . . . . . 6 (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
2524fvmpt2 6772 . . . . 5 ((𝑠 ∈ ℝ ∧ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) → ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
265, 23, 25syl2anc 586 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
27 dirkeritg.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))))
28 oveq1 7155 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (𝑥 mod (2 · π)) = (𝑠 mod (2 · π)))
2928eqeq1d 2821 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((𝑥 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) = 0))
30 oveq2 7156 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑛 + (1 / 2)) · 𝑥) = ((𝑛 + (1 / 2)) · 𝑠))
3130fveq2d 6667 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (sin‘((𝑛 + (1 / 2)) · 𝑥)) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
32 oveq1 7155 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2))
3332fveq2d 6667 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2)))
3433oveq2d 7164 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((2 · π) · (sin‘(𝑥 / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
3531, 34oveq12d 7166 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
3629, 35ifbieq2d 4490 . . . . . . . . . 10 (𝑥 = 𝑠 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
3736cbvmptv 5160 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
3837mpteq2i 5149 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))) = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
3927, 38eqtri 2842 . . . . . . 7 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
40 dirkeritg.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
41 dirkeritg.f . . . . . . 7 𝐹 = (𝐷𝑁)
4239, 40, 41, 24dirkertrigeq 42371 . . . . . 6 (𝜑𝐹 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
4342fveq1d 6665 . . . . 5 (𝜑 → (𝐹𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠))
4443adantr 483 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠))
45 dirkeritg.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π))
46 oveq2 7156 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑘 · 𝑥) = (𝑘 · 𝑠))
4746fveq2d 6667 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑘 · 𝑠)))
4847oveq1d 7163 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((sin‘(𝑘 · 𝑥)) / 𝑘) = ((sin‘(𝑘 · 𝑠)) / 𝑘))
4948sumeq2sdv 15053 . . . . . . . . . . 11 (𝑥 = 𝑠 → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘) = Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))
5032, 49oveq12d 7166 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) = ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))
5150oveq1d 7163 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π) = (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5251cbvmptv 5160 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5345, 52eqtri 2842 . . . . . . 7 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5453oveq2i 7159 . . . . . 6 (ℝ D 𝐺) = (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)))
55 reelprrecn 10621 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
57 recn 10619 . . . . . . . . . . 11 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5857halfcld 11874 . . . . . . . . . 10 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
599zcnd 12080 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
6059adantl 484 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
6157adantr 483 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
6260, 61mulcld 10653 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ)
6362sincld 15475 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
64 0red 10636 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 0 ∈ ℝ)
65 1red 10634 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 1 ∈ ℝ)
66 0lt1 11154 . . . . . . . . . . . . . . . 16 0 < 1
6766a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 0 < 1)
68 elfzle1 12902 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 1 ≤ 𝑘)
6964, 65, 10, 67, 68ltletrd 10792 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → 0 < 𝑘)
7069gt0ne0d 11196 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
7170adantl 484 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
7263, 60, 71divcld 11408 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
738, 72fsumcl 15082 . . . . . . . . . 10 (𝑠 ∈ ℝ → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
7458, 73addcld 10652 . . . . . . . . 9 (𝑠 ∈ ℝ → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ)
75 picn 25037 . . . . . . . . . 10 π ∈ ℂ
7675a1i 11 . . . . . . . . 9 (𝑠 ∈ ℝ → π ∈ ℂ)
7774, 76, 21divcld 11408 . . . . . . . 8 (𝑠 ∈ ℝ → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ)
7877adantl 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ)
7922adantl 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
8074adantl 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ)
8116adantl 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
8258adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → (𝑠 / 2) ∈ ℂ)
836a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → (1 / 2) ∈ ℝ)
8457adantl 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
85 1red 10634 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
8656dvmptid 24546 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
87 2cnd 11707 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
88 2ne0 11733 . . . . . . . . . . 11 2 ≠ 0
8988a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
9056, 84, 85, 86, 87, 89dvmptdivc 24554 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (𝑠 / 2))) = (𝑠 ∈ ℝ ↦ (1 / 2)))
9173adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
9215adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
93 eqid 2819 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9493tgioo2 23403 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
95 reopn 41539 . . . . . . . . . . 11 ℝ ∈ (topGen‘ran (,))
9695a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ (topGen‘ran (,)))
97 fzfid 13333 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
9872ancoms 461 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
99983adant1 1124 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
10014ancoms 461 . . . . . . . . . . . 12 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
101100recnd 10661 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
1021013adant1 1124 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
10355a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → ℝ ∈ {ℝ, ℂ})
10463ancoms 461 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
10559adantr 483 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑘 ∈ ℂ)
106 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
107105, 106mulcld 10653 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · 𝑠) ∈ ℂ)
108107coscld 15476 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
109105, 108mulcld 10653 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
11057, 109sylan2 594 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
111 ax-resscn 10586 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
112 resmpt 5898 . . . . . . . . . . . . . . . . 17 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))))
113111, 112mp1i 13 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))))
114113eqcomd 2825 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))) = ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ))
115114oveq2d 7164 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)))
116107sincld 15475 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
117116fmpttd 6872 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ)
118109ralrimiva 3180 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑁) → ∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
119 dmmptg 6089 . . . . . . . . . . . . . . . . . 18 (∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ)
120118, 119syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ)
121111, 120sseqtrrid 4018 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
122 dvsinax 42181 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℂ → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
12359, 122syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
124123dmeqd 5767 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
125121, 124sseqtrrd 4006 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))))
126 dvcnre 42184 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ))
127117, 125, 126syl2anc 586 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ))
128123reseq1d 5845 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ))
129 resmpt 5898 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
130111, 129ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))
131128, 130syl6eq 2870 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
132115, 127, 1313eqtrd 2858 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
133103, 104, 110, 132, 59, 70dvmptdivc 24554 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)))
13459adantr 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ∈ ℂ)
13570adantr 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ≠ 0)
136101, 134, 135divcan3d 11413 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘) = (cos‘(𝑘 · 𝑠)))
137136mpteq2dva 5152 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
138133, 137eqtrd 2854 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
139138adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁)) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
14094, 93, 56, 96, 97, 99, 102, 139dvmptfsum 24564 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))))
14156, 82, 83, 90, 91, 92, 140dvmptadd 24549 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))) = (𝑠 ∈ ℝ ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))))
14275a1i 11 . . . . . . . 8 (𝜑 → π ∈ ℂ)
14320a1i 11 . . . . . . . 8 (𝜑 → π ≠ 0)
14456, 80, 81, 141, 142, 143dvmptdivc 24554 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
145 dirkeritg.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
146 dirkeritg.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
147145, 146iccssred 41764 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
148 iccntr 23421 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
149145, 146, 148syl2anc 586 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
15056, 78, 79, 144, 147, 94, 93, 149dvmptres2 24551 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
15154, 150syl5eq 2866 . . . . 5 (𝜑 → (ℝ D 𝐺) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
152151, 23fvmpt2d 6774 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
15326, 44, 1523eqtr4d 2864 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹𝑠) = ((ℝ D 𝐺)‘𝑠))
154153itgeq2dv 24374 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠)
155 dirkeritg.aleb . . 3 (𝜑𝐴𝐵)
156 ioosscn 41753 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℂ
157156a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
158 halfcn 11844 . . . . . . . 8 (1 / 2) ∈ ℂ
159158a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
160 ssid 3987 . . . . . . . 8 ℂ ⊆ ℂ
161160a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
162157, 159, 161constcncfg 42138 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
163 eqid 2819 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠)))
164 coscn 25025 . . . . . . . . . . 11 cos ∈ (ℂ–cn→ℂ)
165164a1i 11 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → cos ∈ (ℂ–cn→ℂ))
166 eqid 2819 . . . . . . . . . . . 12 (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠))
167166mulc1cncf 23505 . . . . . . . . . . 11 (𝑘 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ))
16859, 167syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ))
169165, 168cncfmpt1f 23513 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
170156a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴(,)𝐵) ⊆ ℂ)
171160a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ℂ ⊆ ℂ)
1724, 101sylan2 594 . . . . . . . . 9 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
173163, 169, 170, 171, 172cncfmptssg 42137 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
174173adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
175157, 97, 174fsumcncf 42145 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
176162, 175addcncf 42140 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
177 eqid 2819 . . . . . 6 (𝑠 ∈ ℂ ↦ π) = (𝑠 ∈ ℂ ↦ π)
178 cncfmptc 23511 . . . . . . . 8 ((π ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ))
17975, 160, 160, 178mp3an 1454 . . . . . . 7 (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ)
180179a1i 11 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ))
181 difssd 4107 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
182 eldifsn 4711 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
18375, 20, 182mpbir2an 709 . . . . . . 7 π ∈ (ℂ ∖ {0})
184183a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ (ℂ ∖ {0}))
185177, 180, 157, 181, 184cncfmptssg 42137 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
186176, 185divcncf 24040 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
187151, 186eqeltrd 2911 . . 3 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
188 ioossicc 12814 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
189188a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
190 ioombl 24158 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
191190a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
1926a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (1 / 2) ∈ ℝ)
193 fzfid 13333 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (1...𝑁) ∈ Fin)
19410adantl 484 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
195147sselda 3965 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
196195adantr 483 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
197194, 196remulcld 10663 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ)
198197recoscld 15489 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
199193, 198fsumrecl 15083 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
200192, 199readdcld 10662 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
20117a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → π ∈ ℝ)
20220a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → π ≠ 0)
203200, 201, 202redivcld 11460 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
204147, 111sstrdi 3977 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
205204, 159, 161constcncfg 42138 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (1 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
206 eqid 2819 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))
207169adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
208161, 97, 207fsumcncf 42145 . . . . . . . . 9 (𝜑 → (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
209199recnd 10661 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℂ)
210206, 208, 204, 161, 209cncfmptssg 42137 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
211205, 210addcncf 42140 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
212183a1i 11 . . . . . . . 8 (𝜑 → π ∈ (ℂ ∖ {0}))
213204, 212, 181constcncfg 42138 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ π) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
214211, 213divcncf 24040 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
215 cniccibl 24433 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
216145, 146, 214, 215syl3anc 1365 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
217189, 191, 203, 216iblss 24397 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
218151, 217eqeltrd 2911 . . 3 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
219204, 161idcncfg 42139 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑠) ∈ ((𝐴[,]𝐵)–cn→ℂ))
220 2cn 11704 . . . . . . . . . 10 2 ∈ ℂ
221 eldifsn 4711 . . . . . . . . . 10 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
222220, 88, 221mpbir2an 709 . . . . . . . . 9 2 ∈ (ℂ ∖ {0})
223222a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ (ℂ ∖ {0}))
224204, 223, 181constcncfg 42138 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
225219, 224divcncf 24040 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (𝑠 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
226 eqid 2819 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))
227 sincn 25024 . . . . . . . . . . . 12 sin ∈ (ℂ–cn→ℂ)
228227a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → sin ∈ (ℂ–cn→ℂ))
229228, 168cncfmpt1f 23513 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
230229adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
231204adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐴[,]𝐵) ⊆ ℂ)
232160a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → ℂ ⊆ ℂ)
23359ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑘 ∈ ℂ)
234195recnd 10661 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
235234adantlr 713 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
236233, 235mulcld 10653 . . . . . . . . . 10 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑘 · 𝑠) ∈ ℂ)
237236sincld 15475 . . . . . . . . 9 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
238226, 230, 231, 232, 237cncfmptssg 42137 . . . . . . . 8 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
239 eldifsn 4711 . . . . . . . . . . 11 (𝑘 ∈ (ℂ ∖ {0}) ↔ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
24059, 70, 239sylanbrc 585 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ (ℂ ∖ {0}))
241240adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (ℂ ∖ {0}))
242 difssd 4107 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (ℂ ∖ {0}) ⊆ ℂ)
243231, 241, 242constcncfg 42138 . . . . . . . 8 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
244238, 243divcncf 24040 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
245204, 97, 244fsumcncf 42145 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
246225, 245addcncf 42140 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
247246, 213divcncf 24040 . . . 4 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
24853, 247eqeltrid 2915 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
249145, 146, 155, 187, 218, 248ftc2 24633 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠 = ((𝐺𝐵) − (𝐺𝐴)))
2503, 154, 2493eqtrd 2858 1 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  wne 3014  wral 3136  cdif 3931  wss 3934  ifcif 4465  {csn 4559  {cpr 4561   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  (,)cioo 12730  [,]cicc 12733  ...cfz 12884   mod cmo 13229  Σcsu 15034  sincsin 15409  cosccos 15410  πcpi 15412  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20537  intcnt 21617  cnccncf 23476  volcvol 24056  𝐿1cibl 24210  citg 24211   D cdv 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-symdif 4217  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-ofr 7402  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-omul 8099  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-ovol 24057  df-vol 24058  df-mbf 24212  df-itg1 24213  df-itg2 24214  df-ibl 24215  df-itg 24216  df-0p 24263  df-limc 24456  df-dv 24457
This theorem is referenced by:  fourierdlem103  42479  fourierdlem104  42480
  Copyright terms: Public domain W3C validator