Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkeritg Structured version   Visualization version   GIF version

Theorem dirkeritg 46214
Description: The definite integral of the Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkeritg.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))))
dirkeritg.n (𝜑𝑁 ∈ ℕ)
dirkeritg.f 𝐹 = (𝐷𝑁)
dirkeritg.a (𝜑𝐴 ∈ ℝ)
dirkeritg.b (𝜑𝐵 ∈ ℝ)
dirkeritg.aleb (𝜑𝐴𝐵)
dirkeritg.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π))
Assertion
Ref Expression
dirkeritg (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐹   𝑘,𝑁,𝑥   𝜑,𝑘   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑘,𝑛)   𝑁(𝑛)

Proof of Theorem dirkeritg
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6831 . . . 4 (𝑥 = 𝑠 → (𝐹𝑥) = (𝐹𝑠))
21cbvitgv 25715 . . 3 ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠
32a1i 11 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠)
4 elioore 13285 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
54adantl 481 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6 halfre 12344 . . . . . . . . 9 (1 / 2) ∈ ℝ
76a1i 11 . . . . . . . 8 (𝑠 ∈ ℝ → (1 / 2) ∈ ℝ)
8 fzfid 13890 . . . . . . . . 9 (𝑠 ∈ ℝ → (1...𝑁) ∈ Fin)
9 elfzelz 13434 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
109zred 12587 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℝ)
1110adantl 481 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
12 simpl 482 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
1311, 12remulcld 11152 . . . . . . . . . 10 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ)
1413recoscld 16063 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
158, 14fsumrecl 15651 . . . . . . . 8 (𝑠 ∈ ℝ → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
167, 15readdcld 11151 . . . . . . 7 (𝑠 ∈ ℝ → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
17 pire 26403 . . . . . . . 8 π ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑠 ∈ ℝ → π ∈ ℝ)
19 pipos 26405 . . . . . . . . 9 0 < π
2017, 19gt0ne0ii 11663 . . . . . . . 8 π ≠ 0
2120a1i 11 . . . . . . 7 (𝑠 ∈ ℝ → π ≠ 0)
2216, 18, 21redivcld 11959 . . . . . 6 (𝑠 ∈ ℝ → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
235, 22syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
24 eqid 2733 . . . . . 6 (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
2524fvmpt2 6949 . . . . 5 ((𝑠 ∈ ℝ ∧ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) → ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
265, 23, 25syl2anc 584 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
27 dirkeritg.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))))
28 oveq1 7362 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (𝑥 mod (2 · π)) = (𝑠 mod (2 · π)))
2928eqeq1d 2735 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((𝑥 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) = 0))
30 oveq2 7363 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑛 + (1 / 2)) · 𝑥) = ((𝑛 + (1 / 2)) · 𝑠))
3130fveq2d 6835 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (sin‘((𝑛 + (1 / 2)) · 𝑥)) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
32 oveq1 7362 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2))
3332fveq2d 6835 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2)))
3433oveq2d 7371 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((2 · π) · (sin‘(𝑥 / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
3531, 34oveq12d 7373 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
3629, 35ifbieq2d 4503 . . . . . . . . . 10 (𝑥 = 𝑠 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
3736cbvmptv 5199 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
3837mpteq2i 5191 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))) = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
3927, 38eqtri 2756 . . . . . . 7 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
40 dirkeritg.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
41 dirkeritg.f . . . . . . 7 𝐹 = (𝐷𝑁)
4239, 40, 41, 24dirkertrigeq 46213 . . . . . 6 (𝜑𝐹 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
4342fveq1d 6833 . . . . 5 (𝜑 → (𝐹𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠))
4443adantr 480 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠))
45 dirkeritg.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π))
46 oveq2 7363 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑘 · 𝑥) = (𝑘 · 𝑠))
4746fveq2d 6835 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑘 · 𝑠)))
4847oveq1d 7370 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((sin‘(𝑘 · 𝑥)) / 𝑘) = ((sin‘(𝑘 · 𝑠)) / 𝑘))
4948sumeq2sdv 15620 . . . . . . . . . . 11 (𝑥 = 𝑠 → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘) = Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))
5032, 49oveq12d 7373 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) = ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))
5150oveq1d 7370 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π) = (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5251cbvmptv 5199 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5345, 52eqtri 2756 . . . . . . 7 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5453oveq2i 7366 . . . . . 6 (ℝ D 𝐺) = (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)))
55 reelprrecn 11108 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
57 recn 11106 . . . . . . . . . . 11 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5857halfcld 12376 . . . . . . . . . 10 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
599zcnd 12588 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
6059adantl 481 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
6157adantr 480 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
6260, 61mulcld 11142 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ)
6362sincld 16049 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
64 0red 11125 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 0 ∈ ℝ)
65 1red 11123 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 1 ∈ ℝ)
66 0lt1 11649 . . . . . . . . . . . . . . . 16 0 < 1
6766a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 0 < 1)
68 elfzle1 13437 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 1 ≤ 𝑘)
6964, 65, 10, 67, 68ltletrd 11283 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → 0 < 𝑘)
7069gt0ne0d 11691 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
7170adantl 481 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
7263, 60, 71divcld 11907 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
738, 72fsumcl 15650 . . . . . . . . . 10 (𝑠 ∈ ℝ → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
7458, 73addcld 11141 . . . . . . . . 9 (𝑠 ∈ ℝ → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ)
75 picn 26404 . . . . . . . . . 10 π ∈ ℂ
7675a1i 11 . . . . . . . . 9 (𝑠 ∈ ℝ → π ∈ ℂ)
7774, 76, 21divcld 11907 . . . . . . . 8 (𝑠 ∈ ℝ → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ)
7877adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ)
7922adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
8074adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ)
8116adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
8258adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → (𝑠 / 2) ∈ ℂ)
836a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → (1 / 2) ∈ ℝ)
8457adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
85 1red 11123 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
8656dvmptid 25898 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
87 2cnd 12213 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
88 2ne0 12239 . . . . . . . . . . 11 2 ≠ 0
8988a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
9056, 84, 85, 86, 87, 89dvmptdivc 25906 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (𝑠 / 2))) = (𝑠 ∈ ℝ ↦ (1 / 2)))
9173adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
9215adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
93 tgioo4 24730 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
94 eqid 2733 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
95 reopn 45404 . . . . . . . . . . 11 ℝ ∈ (topGen‘ran (,))
9695a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ (topGen‘ran (,)))
97 fzfid 13890 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
9872ancoms 458 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
99983adant1 1130 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
10014ancoms 458 . . . . . . . . . . . 12 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
101100recnd 11150 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
1021013adant1 1130 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
10355a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → ℝ ∈ {ℝ, ℂ})
10463ancoms 458 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
10559adantr 480 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑘 ∈ ℂ)
106 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
107105, 106mulcld 11142 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · 𝑠) ∈ ℂ)
108107coscld 16050 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
109105, 108mulcld 11142 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
11057, 109sylan2 593 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
111 ax-resscn 11073 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
112 resmpt 5993 . . . . . . . . . . . . . . . . 17 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))))
113111, 112mp1i 13 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))))
114113eqcomd 2739 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))) = ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ))
115114oveq2d 7371 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)))
116107sincld 16049 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
117116fmpttd 7057 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ)
118109ralrimiva 3126 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑁) → ∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
119 dmmptg 6197 . . . . . . . . . . . . . . . . . 18 (∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ)
120118, 119syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ)
121111, 120sseqtrrid 3975 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
122 dvsinax 46025 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℂ → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
12359, 122syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
124123dmeqd 5852 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
125121, 124sseqtrrd 3969 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))))
126 dvcnre 46028 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ))
127117, 125, 126syl2anc 584 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ))
128123reseq1d 5934 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ))
129 resmpt 5993 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
130111, 129ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))
131128, 130eqtrdi 2784 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
132115, 127, 1313eqtrd 2772 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
133103, 104, 110, 132, 59, 70dvmptdivc 25906 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)))
13459adantr 480 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ∈ ℂ)
13570adantr 480 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ≠ 0)
136101, 134, 135divcan3d 11912 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘) = (cos‘(𝑘 · 𝑠)))
137136mpteq2dva 5188 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
138133, 137eqtrd 2768 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
139138adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁)) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
14093, 94, 56, 96, 97, 99, 102, 139dvmptfsum 25916 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))))
14156, 82, 83, 90, 91, 92, 140dvmptadd 25901 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))) = (𝑠 ∈ ℝ ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))))
14275a1i 11 . . . . . . . 8 (𝜑 → π ∈ ℂ)
14320a1i 11 . . . . . . . 8 (𝜑 → π ≠ 0)
14456, 80, 81, 141, 142, 143dvmptdivc 25906 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
145 dirkeritg.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
146 dirkeritg.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
147145, 146iccssred 13344 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
148 iccntr 24747 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
149145, 146, 148syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
15056, 78, 79, 144, 147, 93, 94, 149dvmptres2 25903 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
15154, 150eqtrid 2780 . . . . 5 (𝜑 → (ℝ D 𝐺) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
152151, 23fvmpt2d 6951 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
15326, 44, 1523eqtr4d 2778 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹𝑠) = ((ℝ D 𝐺)‘𝑠))
154153itgeq2dv 25720 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠)
155 dirkeritg.aleb . . 3 (𝜑𝐴𝐵)
156 ioosscn 13318 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℂ
157156a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
158 halfcn 12345 . . . . . . . 8 (1 / 2) ∈ ℂ
159158a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
160 ssid 3954 . . . . . . . 8 ℂ ⊆ ℂ
161160a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
162157, 159, 161constcncfg 45984 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
163 eqid 2733 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠)))
164 coscn 26392 . . . . . . . . . . 11 cos ∈ (ℂ–cn→ℂ)
165164a1i 11 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → cos ∈ (ℂ–cn→ℂ))
166 eqid 2733 . . . . . . . . . . . 12 (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠))
167166mulc1cncf 24835 . . . . . . . . . . 11 (𝑘 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ))
16859, 167syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ))
169165, 168cncfmpt1f 24844 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
170156a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴(,)𝐵) ⊆ ℂ)
171160a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ℂ ⊆ ℂ)
1724, 101sylan2 593 . . . . . . . . 9 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
173163, 169, 170, 171, 172cncfmptssg 45983 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
174173adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
175157, 97, 174fsumcncf 45990 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
176162, 175addcncf 25381 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
177 eqid 2733 . . . . . 6 (𝑠 ∈ ℂ ↦ π) = (𝑠 ∈ ℂ ↦ π)
178 cncfmptc 24842 . . . . . . . 8 ((π ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ))
17975, 160, 160, 178mp3an 1463 . . . . . . 7 (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ)
180179a1i 11 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ))
181 difssd 4088 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
182 eldifsn 4739 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
18375, 20, 182mpbir2an 711 . . . . . . 7 π ∈ (ℂ ∖ {0})
184183a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ (ℂ ∖ {0}))
185177, 180, 157, 181, 184cncfmptssg 45983 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
186176, 185divcncf 25385 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
187151, 186eqeltrd 2833 . . 3 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
188 ioossicc 13343 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
189188a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
190 ioombl 25503 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
191190a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
1926a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (1 / 2) ∈ ℝ)
193 fzfid 13890 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (1...𝑁) ∈ Fin)
19410adantl 481 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
195147sselda 3931 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
196195adantr 480 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
197194, 196remulcld 11152 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ)
198197recoscld 16063 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
199193, 198fsumrecl 15651 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
200192, 199readdcld 11151 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
20117a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → π ∈ ℝ)
20220a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → π ≠ 0)
203200, 201, 202redivcld 11959 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
204147, 111sstrdi 3944 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
205204, 159, 161constcncfg 45984 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (1 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
206 eqid 2733 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))
207169adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
208161, 97, 207fsumcncf 45990 . . . . . . . . 9 (𝜑 → (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
209199recnd 11150 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℂ)
210206, 208, 204, 161, 209cncfmptssg 45983 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
211205, 210addcncf 25381 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
212183a1i 11 . . . . . . . 8 (𝜑 → π ∈ (ℂ ∖ {0}))
213204, 212, 181constcncfg 45984 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ π) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
214211, 213divcncf 25385 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
215 cniccibl 25779 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
216145, 146, 214, 215syl3anc 1373 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
217189, 191, 203, 216iblss 25743 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
218151, 217eqeltrd 2833 . . 3 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
219204, 161idcncfg 45985 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑠) ∈ ((𝐴[,]𝐵)–cn→ℂ))
220 2cn 12210 . . . . . . . . . 10 2 ∈ ℂ
221 eldifsn 4739 . . . . . . . . . 10 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
222220, 88, 221mpbir2an 711 . . . . . . . . 9 2 ∈ (ℂ ∖ {0})
223222a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ (ℂ ∖ {0}))
224204, 223, 181constcncfg 45984 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
225219, 224divcncf 25385 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (𝑠 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
226 eqid 2733 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))
227 sincn 26391 . . . . . . . . . . . 12 sin ∈ (ℂ–cn→ℂ)
228227a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → sin ∈ (ℂ–cn→ℂ))
229228, 168cncfmpt1f 24844 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
230229adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
231204adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐴[,]𝐵) ⊆ ℂ)
232160a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → ℂ ⊆ ℂ)
23359ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑘 ∈ ℂ)
234195recnd 11150 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
235234adantlr 715 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
236233, 235mulcld 11142 . . . . . . . . . 10 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑘 · 𝑠) ∈ ℂ)
237236sincld 16049 . . . . . . . . 9 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
238226, 230, 231, 232, 237cncfmptssg 45983 . . . . . . . 8 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
239 eldifsn 4739 . . . . . . . . . . 11 (𝑘 ∈ (ℂ ∖ {0}) ↔ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
24059, 70, 239sylanbrc 583 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ (ℂ ∖ {0}))
241240adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (ℂ ∖ {0}))
242 difssd 4088 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (ℂ ∖ {0}) ⊆ ℂ)
243231, 241, 242constcncfg 45984 . . . . . . . 8 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
244238, 243divcncf 25385 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
245204, 97, 244fsumcncf 45990 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
246225, 245addcncf 25381 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
247246, 213divcncf 25385 . . . 4 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
24853, 247eqeltrid 2837 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
249145, 146, 155, 187, 218, 248ftc2 25988 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠 = ((𝐺𝐵) − (𝐺𝐴)))
2503, 154, 2493eqtrd 2772 1 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  wral 3049  cdif 3896  wss 3899  ifcif 4476  {csn 4577  {cpr 4579   class class class wbr 5095  cmpt 5176  dom cdm 5621  ran crn 5622  cres 5623  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021   < clt 11156  cle 11157  cmin 11354   / cdiv 11784  cn 12135  2c2 12190  (,)cioo 13255  [,]cicc 13258  ...cfz 13417   mod cmo 13783  Σcsu 15603  sincsin 15980  cosccos 15981  πcpi 15983  TopOpenctopn 17335  topGenctg 17351  fldccnfld 21301  intcnt 22942  cnccncf 24806  volcvol 25401  𝐿1cibl 25555  citg 25556   D cdv 25801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-dju 9804  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-ovol 25402  df-vol 25403  df-mbf 25557  df-itg1 25558  df-itg2 25559  df-ibl 25560  df-itg 25561  df-0p 25608  df-limc 25804  df-dv 25805
This theorem is referenced by:  fourierdlem103  46321  fourierdlem104  46322
  Copyright terms: Public domain W3C validator