MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvitg Structured version   Visualization version   GIF version

Theorem cbvitg 25705
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
cbvitg.1 (𝑥 = 𝑦𝐵 = 𝐶)
cbvitg.2 𝑦𝐵
cbvitg.3 𝑥𝐶
Assertion
Ref Expression
cbvitg 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . . . . . 9 𝑦 𝑥𝐴
2 nfcv 2894 . . . . . . . . . 10 𝑦0
3 nfcv 2894 . . . . . . . . . 10 𝑦
4 nfcv 2894 . . . . . . . . . . 11 𝑦
5 cbvitg.2 . . . . . . . . . . . 12 𝑦𝐵
6 nfcv 2894 . . . . . . . . . . . 12 𝑦 /
7 nfcv 2894 . . . . . . . . . . . 12 𝑦(i↑𝑘)
85, 6, 7nfov 7376 . . . . . . . . . . 11 𝑦(𝐵 / (i↑𝑘))
94, 8nffv 6832 . . . . . . . . . 10 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
102, 3, 9nfbr 5138 . . . . . . . . 9 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
111, 10nfan 1900 . . . . . . . 8 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1211, 9, 2nfif 4506 . . . . . . 7 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
13 nfv 1915 . . . . . . . . 9 𝑥 𝑦𝐴
14 nfcv 2894 . . . . . . . . . 10 𝑥0
15 nfcv 2894 . . . . . . . . . 10 𝑥
16 nfcv 2894 . . . . . . . . . . 11 𝑥
17 cbvitg.3 . . . . . . . . . . . 12 𝑥𝐶
18 nfcv 2894 . . . . . . . . . . . 12 𝑥 /
19 nfcv 2894 . . . . . . . . . . . 12 𝑥(i↑𝑘)
2017, 18, 19nfov 7376 . . . . . . . . . . 11 𝑥(𝐶 / (i↑𝑘))
2116, 20nffv 6832 . . . . . . . . . 10 𝑥(ℜ‘(𝐶 / (i↑𝑘)))
2214, 15, 21nfbr 5138 . . . . . . . . 9 𝑥0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))
2313, 22nfan 1900 . . . . . . . 8 𝑥(𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
2423, 21, 14nfif 4506 . . . . . . 7 𝑥if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
25 eleq1w 2814 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
26 cbvitg.1 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝐶)
2726fvoveq1d 7368 . . . . . . . . . 10 (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
2827breq2d 5103 . . . . . . . . 9 (𝑥 = 𝑦 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))
2925, 28anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))))
3029, 27ifbieq1d 4500 . . . . . . 7 (𝑥 = 𝑦 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3112, 24, 30cbvmpt 5193 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3231a1i 11 . . . . 5 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
3332fveq2d 6826 . . . 4 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
3433oveq2d 7362 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
3534sumeq2i 15605 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
36 eqid 2731 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
3736dfitg 25698 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
38 eqid 2731 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
3938dfitg 25698 . 2 𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4035, 37, 393eqtr4i 2764 1 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wnfc 2879  ifcif 4475   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  ici 11008   · cmul 11011  cle 11147   / cdiv 11774  3c3 12181  ...cfz 13407  cexp 13968  cre 15004  Σcsu 15593  2citg2 25545  citg 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-sum 15594  df-itg 25552
This theorem is referenced by:  itgmpt  25712  itgfsum  25756  itgabs  25764  cbvditg  25783  itgparts  25982  itgsubstlem  25983  itgulm2  26346  itgabsnc  37735
  Copyright terms: Public domain W3C validator