MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvitg Structured version   Visualization version   GIF version

Theorem cbvitg 25729
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
cbvitg.1 (𝑥 = 𝑦𝐵 = 𝐶)
cbvitg.2 𝑦𝐵
cbvitg.3 𝑥𝐶
Assertion
Ref Expression
cbvitg 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . . . . 9 𝑦 𝑥𝐴
2 nfcv 2898 . . . . . . . . . 10 𝑦0
3 nfcv 2898 . . . . . . . . . 10 𝑦
4 nfcv 2898 . . . . . . . . . . 11 𝑦
5 cbvitg.2 . . . . . . . . . . . 12 𝑦𝐵
6 nfcv 2898 . . . . . . . . . . . 12 𝑦 /
7 nfcv 2898 . . . . . . . . . . . 12 𝑦(i↑𝑘)
85, 6, 7nfov 7435 . . . . . . . . . . 11 𝑦(𝐵 / (i↑𝑘))
94, 8nffv 6886 . . . . . . . . . 10 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
102, 3, 9nfbr 5166 . . . . . . . . 9 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
111, 10nfan 1899 . . . . . . . 8 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1211, 9, 2nfif 4531 . . . . . . 7 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
13 nfv 1914 . . . . . . . . 9 𝑥 𝑦𝐴
14 nfcv 2898 . . . . . . . . . 10 𝑥0
15 nfcv 2898 . . . . . . . . . 10 𝑥
16 nfcv 2898 . . . . . . . . . . 11 𝑥
17 cbvitg.3 . . . . . . . . . . . 12 𝑥𝐶
18 nfcv 2898 . . . . . . . . . . . 12 𝑥 /
19 nfcv 2898 . . . . . . . . . . . 12 𝑥(i↑𝑘)
2017, 18, 19nfov 7435 . . . . . . . . . . 11 𝑥(𝐶 / (i↑𝑘))
2116, 20nffv 6886 . . . . . . . . . 10 𝑥(ℜ‘(𝐶 / (i↑𝑘)))
2214, 15, 21nfbr 5166 . . . . . . . . 9 𝑥0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))
2313, 22nfan 1899 . . . . . . . 8 𝑥(𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
2423, 21, 14nfif 4531 . . . . . . 7 𝑥if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
25 eleq1w 2817 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
26 cbvitg.1 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝐶)
2726fvoveq1d 7427 . . . . . . . . . 10 (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
2827breq2d 5131 . . . . . . . . 9 (𝑥 = 𝑦 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))
2925, 28anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))))
3029, 27ifbieq1d 4525 . . . . . . 7 (𝑥 = 𝑦 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3112, 24, 30cbvmpt 5223 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3231a1i 11 . . . . 5 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
3332fveq2d 6880 . . . 4 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
3433oveq2d 7421 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
3534sumeq2i 15714 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
36 eqid 2735 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
3736dfitg 25722 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
38 eqid 2735 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
3938dfitg 25722 . 2 𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4035, 37, 393eqtr4i 2768 1 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wnfc 2883  ifcif 4500   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  ici 11131   · cmul 11134  cle 11270   / cdiv 11894  3c3 12296  ...cfz 13524  cexp 14079  cre 15116  Σcsu 15702  2citg2 25569  citg 25571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-sum 15703  df-itg 25576
This theorem is referenced by:  itgmpt  25736  itgfsum  25780  itgabs  25788  cbvditg  25807  itgparts  26006  itgsubstlem  26007  itgulm2  26370  itgabsnc  37713
  Copyright terms: Public domain W3C validator