MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvitg Structured version   Visualization version   GIF version

Theorem cbvitg 25684
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
cbvitg.1 (𝑥 = 𝑦𝐵 = 𝐶)
cbvitg.2 𝑦𝐵
cbvitg.3 𝑥𝐶
Assertion
Ref Expression
cbvitg 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . . . . 9 𝑦 𝑥𝐴
2 nfcv 2892 . . . . . . . . . 10 𝑦0
3 nfcv 2892 . . . . . . . . . 10 𝑦
4 nfcv 2892 . . . . . . . . . . 11 𝑦
5 cbvitg.2 . . . . . . . . . . . 12 𝑦𝐵
6 nfcv 2892 . . . . . . . . . . . 12 𝑦 /
7 nfcv 2892 . . . . . . . . . . . 12 𝑦(i↑𝑘)
85, 6, 7nfov 7420 . . . . . . . . . . 11 𝑦(𝐵 / (i↑𝑘))
94, 8nffv 6871 . . . . . . . . . 10 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
102, 3, 9nfbr 5157 . . . . . . . . 9 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
111, 10nfan 1899 . . . . . . . 8 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1211, 9, 2nfif 4522 . . . . . . 7 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
13 nfv 1914 . . . . . . . . 9 𝑥 𝑦𝐴
14 nfcv 2892 . . . . . . . . . 10 𝑥0
15 nfcv 2892 . . . . . . . . . 10 𝑥
16 nfcv 2892 . . . . . . . . . . 11 𝑥
17 cbvitg.3 . . . . . . . . . . . 12 𝑥𝐶
18 nfcv 2892 . . . . . . . . . . . 12 𝑥 /
19 nfcv 2892 . . . . . . . . . . . 12 𝑥(i↑𝑘)
2017, 18, 19nfov 7420 . . . . . . . . . . 11 𝑥(𝐶 / (i↑𝑘))
2116, 20nffv 6871 . . . . . . . . . 10 𝑥(ℜ‘(𝐶 / (i↑𝑘)))
2214, 15, 21nfbr 5157 . . . . . . . . 9 𝑥0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))
2313, 22nfan 1899 . . . . . . . 8 𝑥(𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
2423, 21, 14nfif 4522 . . . . . . 7 𝑥if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
25 eleq1w 2812 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
26 cbvitg.1 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝐶)
2726fvoveq1d 7412 . . . . . . . . . 10 (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
2827breq2d 5122 . . . . . . . . 9 (𝑥 = 𝑦 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))
2925, 28anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))))
3029, 27ifbieq1d 4516 . . . . . . 7 (𝑥 = 𝑦 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3112, 24, 30cbvmpt 5212 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3231a1i 11 . . . . 5 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
3332fveq2d 6865 . . . 4 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
3433oveq2d 7406 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
3534sumeq2i 15671 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
36 eqid 2730 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
3736dfitg 25677 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
38 eqid 2730 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
3938dfitg 25677 . 2 𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4035, 37, 393eqtr4i 2763 1 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2877  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  ici 11077   · cmul 11080  cle 11216   / cdiv 11842  3c3 12249  ...cfz 13475  cexp 14033  cre 15070  Σcsu 15659  2citg2 25524  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-sum 15660  df-itg 25531
This theorem is referenced by:  itgmpt  25691  itgfsum  25735  itgabs  25743  cbvditg  25762  itgparts  25961  itgsubstlem  25962  itgulm2  26325  itgabsnc  37690
  Copyright terms: Public domain W3C validator