MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvitg Structured version   Visualization version   GIF version

Theorem cbvitg 24921
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
cbvitg.1 (𝑥 = 𝑦𝐵 = 𝐶)
cbvitg.2 𝑦𝐵
cbvitg.3 𝑥𝐶
Assertion
Ref Expression
cbvitg 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1920 . . . . . . . . 9 𝑦 𝑥𝐴
2 nfcv 2908 . . . . . . . . . 10 𝑦0
3 nfcv 2908 . . . . . . . . . 10 𝑦
4 nfcv 2908 . . . . . . . . . . 11 𝑦
5 cbvitg.2 . . . . . . . . . . . 12 𝑦𝐵
6 nfcv 2908 . . . . . . . . . . . 12 𝑦 /
7 nfcv 2908 . . . . . . . . . . . 12 𝑦(i↑𝑘)
85, 6, 7nfov 7298 . . . . . . . . . . 11 𝑦(𝐵 / (i↑𝑘))
94, 8nffv 6778 . . . . . . . . . 10 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
102, 3, 9nfbr 5125 . . . . . . . . 9 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
111, 10nfan 1905 . . . . . . . 8 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1211, 9, 2nfif 4494 . . . . . . 7 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
13 nfv 1920 . . . . . . . . 9 𝑥 𝑦𝐴
14 nfcv 2908 . . . . . . . . . 10 𝑥0
15 nfcv 2908 . . . . . . . . . 10 𝑥
16 nfcv 2908 . . . . . . . . . . 11 𝑥
17 cbvitg.3 . . . . . . . . . . . 12 𝑥𝐶
18 nfcv 2908 . . . . . . . . . . . 12 𝑥 /
19 nfcv 2908 . . . . . . . . . . . 12 𝑥(i↑𝑘)
2017, 18, 19nfov 7298 . . . . . . . . . . 11 𝑥(𝐶 / (i↑𝑘))
2116, 20nffv 6778 . . . . . . . . . 10 𝑥(ℜ‘(𝐶 / (i↑𝑘)))
2214, 15, 21nfbr 5125 . . . . . . . . 9 𝑥0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))
2313, 22nfan 1905 . . . . . . . 8 𝑥(𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
2423, 21, 14nfif 4494 . . . . . . 7 𝑥if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
25 eleq1w 2822 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
26 cbvitg.1 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝐶)
2726fvoveq1d 7290 . . . . . . . . . 10 (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
2827breq2d 5090 . . . . . . . . 9 (𝑥 = 𝑦 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))
2925, 28anbi12d 630 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))))
3029, 27ifbieq1d 4488 . . . . . . 7 (𝑥 = 𝑦 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3112, 24, 30cbvmpt 5189 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3231a1i 11 . . . . 5 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
3332fveq2d 6772 . . . 4 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
3433oveq2d 7284 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
3534sumeq2i 15392 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
36 eqid 2739 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
3736dfitg 24915 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
38 eqid 2739 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
3938dfitg 24915 . 2 𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4035, 37, 393eqtr4i 2777 1 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wnfc 2888  ifcif 4464   class class class wbr 5078  cmpt 5161  cfv 6430  (class class class)co 7268  cr 10854  0cc0 10855  ici 10857   · cmul 10860  cle 10994   / cdiv 11615  3c3 12012  ...cfz 13221  cexp 13763  cre 14789  Σcsu 15378  2citg2 24761  citg 24763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-seq 13703  df-sum 15379  df-itg 24768
This theorem is referenced by:  cbvitgv  24922  itgmpt  24928  itgfsum  24972  itgabs  24980  cbvditg  24999  itgparts  25192  itgsubstlem  25193  itgulm2  25549  itgabsnc  35825
  Copyright terms: Public domain W3C validator