Step | Hyp | Ref
| Expression |
1 | | nfv 1915 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
2 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑦0 |
3 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑦
≤ |
4 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦ℜ |
5 | | cbvitg.2 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝐵 |
6 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦
/ |
7 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(i↑𝑘) |
8 | 5, 6, 7 | nfov 7337 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝐵 / (i↑𝑘)) |
9 | 4, 8 | nffv 6814 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(ℜ‘(𝐵 / (i↑𝑘))) |
10 | 2, 3, 9 | nfbr 5128 |
. . . . . . . . 9
⊢
Ⅎ𝑦0 ≤
(ℜ‘(𝐵 /
(i↑𝑘))) |
11 | 1, 10 | nfan 1900 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) |
12 | 11, 9, 2 | nfif 4495 |
. . . . . . 7
⊢
Ⅎ𝑦if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) |
13 | | nfv 1915 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
14 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥0 |
15 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥
≤ |
16 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥ℜ |
17 | | cbvitg.3 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝐶 |
18 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥
/ |
19 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(i↑𝑘) |
20 | 17, 18, 19 | nfov 7337 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝐶 / (i↑𝑘)) |
21 | 16, 20 | nffv 6814 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(ℜ‘(𝐶 / (i↑𝑘))) |
22 | 14, 15, 21 | nfbr 5128 |
. . . . . . . . 9
⊢
Ⅎ𝑥0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))) |
23 | 13, 22 | nfan 1900 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) |
24 | 23, 21, 14 | nfif 4495 |
. . . . . . 7
⊢
Ⅎ𝑥if((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) |
25 | | eleq1w 2819 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
26 | | cbvitg.1 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
27 | 26 | fvoveq1d 7329 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
28 | 27 | breq2d 5093 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))) |
29 | 25, 28 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))) |
30 | 29, 27 | ifbieq1d 4489 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
31 | 12, 24, 30 | cbvmpt 5192 |
. . . . . 6
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
32 | 31 | a1i 11 |
. . . . 5
⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
33 | 32 | fveq2d 6808 |
. . . 4
⊢ (𝑘 ∈ (0...3) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
34 | 33 | oveq2d 7323 |
. . 3
⊢ (𝑘 ∈ (0...3) →
((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))))) |
35 | 34 | sumeq2i 15460 |
. 2
⊢
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
36 | | eqid 2736 |
. . 3
⊢
(ℜ‘(𝐵 /
(i↑𝑘))) =
(ℜ‘(𝐵 /
(i↑𝑘))) |
37 | 36 | dfitg 24983 |
. 2
⊢
∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))),
0)))) |
38 | | eqid 2736 |
. . 3
⊢
(ℜ‘(𝐶 /
(i↑𝑘))) =
(ℜ‘(𝐶 /
(i↑𝑘))) |
39 | 38 | dfitg 24983 |
. 2
⊢
∫𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
40 | 35, 37, 39 | 3eqtr4i 2774 |
1
⊢
∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 |