| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 2 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑦0 |
| 3 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑦
≤ |
| 4 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦ℜ |
| 5 | | cbvitg.2 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝐵 |
| 6 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦
/ |
| 7 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(i↑𝑘) |
| 8 | 5, 6, 7 | nfov 7461 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝐵 / (i↑𝑘)) |
| 9 | 4, 8 | nffv 6916 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(ℜ‘(𝐵 / (i↑𝑘))) |
| 10 | 2, 3, 9 | nfbr 5190 |
. . . . . . . . 9
⊢
Ⅎ𝑦0 ≤
(ℜ‘(𝐵 /
(i↑𝑘))) |
| 11 | 1, 10 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) |
| 12 | 11, 9, 2 | nfif 4556 |
. . . . . . 7
⊢
Ⅎ𝑦if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) |
| 13 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 14 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥0 |
| 15 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥
≤ |
| 16 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥ℜ |
| 17 | | cbvitg.3 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝐶 |
| 18 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥
/ |
| 19 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(i↑𝑘) |
| 20 | 17, 18, 19 | nfov 7461 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝐶 / (i↑𝑘)) |
| 21 | 16, 20 | nffv 6916 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(ℜ‘(𝐶 / (i↑𝑘))) |
| 22 | 14, 15, 21 | nfbr 5190 |
. . . . . . . . 9
⊢
Ⅎ𝑥0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))) |
| 23 | 13, 22 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) |
| 24 | 23, 21, 14 | nfif 4556 |
. . . . . . 7
⊢
Ⅎ𝑥if((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) |
| 25 | | eleq1w 2824 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 26 | | cbvitg.1 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| 27 | 26 | fvoveq1d 7453 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 28 | 27 | breq2d 5155 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))) |
| 29 | 25, 28 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))) |
| 30 | 29, 27 | ifbieq1d 4550 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 31 | 12, 24, 30 | cbvmpt 5253 |
. . . . . 6
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
| 32 | 31 | a1i 11 |
. . . . 5
⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))) |
| 33 | 32 | fveq2d 6910 |
. . . 4
⊢ (𝑘 ∈ (0...3) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
| 34 | 33 | oveq2d 7447 |
. . 3
⊢ (𝑘 ∈ (0...3) →
((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))))) |
| 35 | 34 | sumeq2i 15734 |
. 2
⊢
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
| 36 | | eqid 2737 |
. . 3
⊢
(ℜ‘(𝐵 /
(i↑𝑘))) =
(ℜ‘(𝐵 /
(i↑𝑘))) |
| 37 | 36 | dfitg 25804 |
. 2
⊢
∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))),
0)))) |
| 38 | | eqid 2737 |
. . 3
⊢
(ℜ‘(𝐶 /
(i↑𝑘))) =
(ℜ‘(𝐶 /
(i↑𝑘))) |
| 39 | 38 | dfitg 25804 |
. 2
⊢
∫𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
| 40 | 35, 37, 39 | 3eqtr4i 2775 |
1
⊢
∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 |