Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgtd Structured version   Visualization version   GIF version

Theorem tgoldbachgtd 32748
Description: Odd integers greater than (10↑27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgtd.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgtd.n (𝜑𝑁𝑂)
tgoldbachgtd.1 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
tgoldbachgtd (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑂
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem tgoldbachgtd
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgoldbachgtd.o . . 3 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2 tgoldbachgtd.n . . . 4 (𝜑𝑁𝑂)
32ad3antrrr 727 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 𝑁𝑂)
4 tgoldbachgtd.1 . . . 4 (𝜑 → (10↑27) ≤ 𝑁)
54ad3antrrr 727 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → (10↑27) ≤ 𝑁)
6 elmapi 8683 . . . 4 ( ∈ ((0[,)+∞) ↑m ℕ) → :ℕ⟶(0[,)+∞))
76ad3antlr 728 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → :ℕ⟶(0[,)+∞))
8 elmapi 8683 . . . 4 (𝑘 ∈ ((0[,)+∞) ↑m ℕ) → 𝑘:ℕ⟶(0[,)+∞))
98ad2antlr 724 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 𝑘:ℕ⟶(0[,)+∞))
10 simpr1 1193 . . . . 5 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955))
11 fveq2 6809 . . . . . . 7 (𝑚 = 𝑛 → (𝑘𝑚) = (𝑘𝑛))
1211breq1d 5095 . . . . . 6 (𝑚 = 𝑛 → ((𝑘𝑚) ≤ (1.079955) ↔ (𝑘𝑛) ≤ (1.079955)))
1312cbvralvw 3222 . . . . 5 (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ↔ ∀𝑛 ∈ ℕ (𝑘𝑛) ≤ (1.079955))
1410, 13sylib 217 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑛 ∈ ℕ (𝑘𝑛) ≤ (1.079955))
1514r19.21bi 3231 . . 3 (((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) ∧ 𝑛 ∈ ℕ) → (𝑘𝑛) ≤ (1.079955))
16 simpr2 1194 . . . . 5 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414))
17 fveq2 6809 . . . . . . 7 (𝑚 = 𝑛 → (𝑚) = (𝑛))
1817breq1d 5095 . . . . . 6 (𝑚 = 𝑛 → ((𝑚) ≤ (1.414) ↔ (𝑛) ≤ (1.414)))
1918cbvralvw 3222 . . . . 5 (∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ↔ ∀𝑛 ∈ ℕ (𝑛) ≤ (1.414))
2016, 19sylib 217 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑛 ∈ ℕ (𝑛) ≤ (1.414))
2120r19.21bi 3231 . . 3 (((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) ∧ 𝑛 ∈ ℕ) → (𝑛) ≤ (1.414))
22 simpr3 1195 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
23 fveq2 6809 . . . . . . 7 (𝑥 = 𝑦 → (((Λ ∘f · )vts𝑁)‘𝑥) = (((Λ ∘f · )vts𝑁)‘𝑦))
24 fveq2 6809 . . . . . . . 8 (𝑥 = 𝑦 → (((Λ ∘f · 𝑘)vts𝑁)‘𝑥) = (((Λ ∘f · 𝑘)vts𝑁)‘𝑦))
2524oveq1d 7328 . . . . . . 7 (𝑥 = 𝑦 → ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2) = ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2))
2623, 25oveq12d 7331 . . . . . 6 (𝑥 = 𝑦 → ((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) = ((((Λ ∘f · )vts𝑁)‘𝑦) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2)))
27 oveq2 7321 . . . . . . . 8 (𝑥 = 𝑦 → (-𝑁 · 𝑥) = (-𝑁 · 𝑦))
2827oveq2d 7329 . . . . . . 7 (𝑥 = 𝑦 → ((i · (2 · π)) · (-𝑁 · 𝑥)) = ((i · (2 · π)) · (-𝑁 · 𝑦)))
2928fveq2d 6813 . . . . . 6 (𝑥 = 𝑦 → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) = (exp‘((i · (2 · π)) · (-𝑁 · 𝑦))))
3026, 29oveq12d 7331 . . . . 5 (𝑥 = 𝑦 → (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑦) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))))
3130cbvitgv 25012 . . . 4 ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑦) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))) d𝑦
3222, 31breqtrdi 5126 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑦) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))) d𝑦)
331, 3, 5, 7, 9, 15, 21, 32tgoldbachgtda 32747 . 2 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
341, 2, 4hgt749d 32735 . 2 (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
3533, 34r19.29vva 3204 1 (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3062  {crab 3404  cin 3895   class class class wbr 5085  wf 6459  cfv 6463  (class class class)co 7313  f cof 7569  m cmap 8661  0cc0 10941  1c1 10942  ici 10943   · cmul 10946  +∞cpnf 11076   < clt 11079  cle 11080  -cneg 11276  cn 12043  2c2 12098  3c3 12099  4c4 12100  5c5 12101  7c7 12103  8c8 12104  9c9 12105  cz 12389  cdc 12507  (,)cioo 13149  [,)cico 13151  cexp 13852  chash 14114  expce 15840  πcpi 15845  cdvds 16032  cprime 16443  citg 24853  Λcvma 26312  cdp2 31253  .cdp 31270  reprcrepr 32694  vtscvts 32721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-reg 9419  ax-inf2 9467  ax-cc 10261  ax-ac2 10289  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019  ax-addf 11020  ax-mulf 11021  ax-hgt749 32730  ax-ros335 32731  ax-ros336 32732
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-symdif 4186  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-iin 4938  df-disj 5051  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-ofr 7572  df-om 7756  df-1st 7874  df-2nd 7875  df-supp 8023  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-oadd 8346  df-omul 8347  df-er 8544  df-map 8663  df-pm 8664  df-ixp 8732  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-fsupp 9197  df-fi 9238  df-sup 9269  df-inf 9270  df-oi 9337  df-r1 9590  df-rank 9591  df-dju 9727  df-card 9765  df-acn 9768  df-ac 9942  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-xnn0 12376  df-z 12390  df-dec 12508  df-uz 12653  df-q 12759  df-rp 12801  df-xneg 12918  df-xadd 12919  df-xmul 12920  df-ioo 13153  df-ioc 13154  df-ico 13155  df-icc 13156  df-fz 13310  df-fzo 13453  df-fl 13582  df-mod 13660  df-seq 13792  df-exp 13853  df-fac 14058  df-bc 14087  df-hash 14115  df-word 14287  df-concat 14343  df-s1 14370  df-s2 14630  df-s3 14631  df-shft 14847  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-limsup 15249  df-clim 15266  df-rlim 15267  df-sum 15467  df-prod 15685  df-ef 15846  df-e 15847  df-sin 15848  df-cos 15849  df-tan 15850  df-pi 15851  df-dvds 16033  df-gcd 16271  df-prm 16444  df-pc 16605  df-struct 16915  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-starv 17044  df-sca 17045  df-vsca 17046  df-ip 17047  df-tset 17048  df-ple 17049  df-ds 17051  df-unif 17052  df-hom 17053  df-cco 17054  df-rest 17200  df-topn 17201  df-0g 17219  df-gsum 17220  df-topgen 17221  df-pt 17222  df-prds 17225  df-xrs 17280  df-qtop 17285  df-imas 17286  df-xps 17288  df-mre 17362  df-mrc 17363  df-acs 17365  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-submnd 18498  df-mulg 18768  df-cntz 18990  df-pmtr 19117  df-cmn 19455  df-psmet 20660  df-xmet 20661  df-met 20662  df-bl 20663  df-mopn 20664  df-fbas 20665  df-fg 20666  df-cnfld 20669  df-top 22114  df-topon 22131  df-topsp 22153  df-bases 22167  df-cld 22241  df-ntr 22242  df-cls 22243  df-nei 22320  df-lp 22358  df-perf 22359  df-cn 22449  df-cnp 22450  df-haus 22537  df-cmp 22609  df-tx 22784  df-hmeo 22977  df-fil 23068  df-fm 23160  df-flim 23161  df-flf 23162  df-xms 23544  df-ms 23545  df-tms 23546  df-cncf 24112  df-ovol 24699  df-vol 24700  df-mbf 24854  df-itg1 24855  df-itg2 24856  df-ibl 24857  df-itg 24858  df-0p 24905  df-limc 25101  df-dv 25102  df-ulm 25607  df-log 25783  df-cxp 25784  df-atan 26088  df-cht 26317  df-vma 26318  df-chp 26319  df-dp2 31254  df-dp 31271  df-repr 32695  df-vts 32722
This theorem is referenced by:  tgoldbachgt  32749
  Copyright terms: Public domain W3C validator