Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgtd Structured version   Visualization version   GIF version

Theorem tgoldbachgtd 32326
Description: Odd integers greater than (10↑27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgtd.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgtd.n (𝜑𝑁𝑂)
tgoldbachgtd.1 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
tgoldbachgtd (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑂
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem tgoldbachgtd
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgoldbachgtd.o . . 3 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2 tgoldbachgtd.n . . . 4 (𝜑𝑁𝑂)
32ad3antrrr 730 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 𝑁𝑂)
4 tgoldbachgtd.1 . . . 4 (𝜑 → (10↑27) ≤ 𝑁)
54ad3antrrr 730 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → (10↑27) ≤ 𝑁)
6 elmapi 8519 . . . 4 ( ∈ ((0[,)+∞) ↑m ℕ) → :ℕ⟶(0[,)+∞))
76ad3antlr 731 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → :ℕ⟶(0[,)+∞))
8 elmapi 8519 . . . 4 (𝑘 ∈ ((0[,)+∞) ↑m ℕ) → 𝑘:ℕ⟶(0[,)+∞))
98ad2antlr 727 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 𝑘:ℕ⟶(0[,)+∞))
10 simpr1 1196 . . . . 5 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955))
11 fveq2 6706 . . . . . . 7 (𝑚 = 𝑛 → (𝑘𝑚) = (𝑘𝑛))
1211breq1d 5053 . . . . . 6 (𝑚 = 𝑛 → ((𝑘𝑚) ≤ (1.079955) ↔ (𝑘𝑛) ≤ (1.079955)))
1312cbvralvw 3351 . . . . 5 (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ↔ ∀𝑛 ∈ ℕ (𝑘𝑛) ≤ (1.079955))
1410, 13sylib 221 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑛 ∈ ℕ (𝑘𝑛) ≤ (1.079955))
1514r19.21bi 3123 . . 3 (((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) ∧ 𝑛 ∈ ℕ) → (𝑘𝑛) ≤ (1.079955))
16 simpr2 1197 . . . . 5 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414))
17 fveq2 6706 . . . . . . 7 (𝑚 = 𝑛 → (𝑚) = (𝑛))
1817breq1d 5053 . . . . . 6 (𝑚 = 𝑛 → ((𝑚) ≤ (1.414) ↔ (𝑛) ≤ (1.414)))
1918cbvralvw 3351 . . . . 5 (∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ↔ ∀𝑛 ∈ ℕ (𝑛) ≤ (1.414))
2016, 19sylib 221 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑛 ∈ ℕ (𝑛) ≤ (1.414))
2120r19.21bi 3123 . . 3 (((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) ∧ 𝑛 ∈ ℕ) → (𝑛) ≤ (1.414))
22 simpr3 1198 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
23 fveq2 6706 . . . . . . 7 (𝑥 = 𝑦 → (((Λ ∘f · )vts𝑁)‘𝑥) = (((Λ ∘f · )vts𝑁)‘𝑦))
24 fveq2 6706 . . . . . . . 8 (𝑥 = 𝑦 → (((Λ ∘f · 𝑘)vts𝑁)‘𝑥) = (((Λ ∘f · 𝑘)vts𝑁)‘𝑦))
2524oveq1d 7217 . . . . . . 7 (𝑥 = 𝑦 → ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2) = ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2))
2623, 25oveq12d 7220 . . . . . 6 (𝑥 = 𝑦 → ((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) = ((((Λ ∘f · )vts𝑁)‘𝑦) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2)))
27 oveq2 7210 . . . . . . . 8 (𝑥 = 𝑦 → (-𝑁 · 𝑥) = (-𝑁 · 𝑦))
2827oveq2d 7218 . . . . . . 7 (𝑥 = 𝑦 → ((i · (2 · π)) · (-𝑁 · 𝑥)) = ((i · (2 · π)) · (-𝑁 · 𝑦)))
2928fveq2d 6710 . . . . . 6 (𝑥 = 𝑦 → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) = (exp‘((i · (2 · π)) · (-𝑁 · 𝑦))))
3026, 29oveq12d 7220 . . . . 5 (𝑥 = 𝑦 → (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑦) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))))
3130cbvitgv 24646 . . . 4 ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑦) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))) d𝑦
3222, 31breqtrdi 5084 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑦) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))) d𝑦)
331, 3, 5, 7, 9, 15, 21, 32tgoldbachgtda 32325 . 2 ((((𝜑 ∈ ((0[,)+∞) ↑m ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑m ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
341, 2, 4hgt749d 32313 . 2 (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
3533, 34r19.29vva 3245 1 (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  {crab 3058  cin 3856   class class class wbr 5043  wf 6365  cfv 6369  (class class class)co 7202  f cof 7456  m cmap 8497  0cc0 10712  1c1 10713  ici 10714   · cmul 10717  +∞cpnf 10847   < clt 10850  cle 10851  -cneg 11046  cn 11813  2c2 11868  3c3 11869  4c4 11870  5c5 11871  7c7 11873  8c8 11874  9c9 11875  cz 12159  cdc 12276  (,)cioo 12918  [,)cico 12920  cexp 13618  chash 13879  expce 15604  πcpi 15609  cdvds 15796  cprime 16209  citg 24487  Λcvma 25946  cdp2 30837  .cdp 30854  reprcrepr 32272  vtscvts 32299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-reg 9197  ax-inf2 9245  ax-cc 10032  ax-ac2 10060  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792  ax-hgt749 32308  ax-ros335 32309  ax-ros336 32310
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-symdif 4147  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-disj 5009  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-ofr 7459  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-omul 8196  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-r1 9363  df-rank 9364  df-dju 9500  df-card 9538  df-acn 9541  df-ac 9713  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-xnn0 12146  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-word 14053  df-concat 14109  df-s1 14136  df-s2 14396  df-s3 14397  df-shft 14613  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-sum 15233  df-prod 15449  df-ef 15610  df-e 15611  df-sin 15612  df-cos 15613  df-tan 15614  df-pi 15615  df-dvds 15797  df-gcd 16035  df-prm 16210  df-pc 16371  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-pmtr 18806  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-cn 22096  df-cnp 22097  df-haus 22184  df-cmp 22256  df-tx 22431  df-hmeo 22624  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747  df-ovol 24333  df-vol 24334  df-mbf 24488  df-itg1 24489  df-itg2 24490  df-ibl 24491  df-itg 24492  df-0p 24539  df-limc 24735  df-dv 24736  df-ulm 25241  df-log 25417  df-cxp 25418  df-atan 25722  df-cht 25951  df-vma 25952  df-chp 25953  df-dp2 30838  df-dp 30855  df-repr 32273  df-vts 32300
This theorem is referenced by:  tgoldbachgt  32327
  Copyright terms: Public domain W3C validator