![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pj3lem1 | Structured version Visualization version GIF version |
Description: Lemma for projection triplet theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjadj2co.1 | ⊢ 𝐹 ∈ Cℋ |
pjadj2co.2 | ⊢ 𝐺 ∈ Cℋ |
pjadj2co.3 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
pj3lem1 | ⊢ (𝐴 ∈ ((𝐹 ∩ 𝐺) ∩ 𝐻) → ((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coass 5910 | . . 3 ⊢ (((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = ((projℎ‘𝐹) ∘ ((projℎ‘𝐺) ∘ (projℎ‘𝐻))) | |
2 | 1 | fveq1i 6449 | . 2 ⊢ ((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻))‘𝐴) = (((projℎ‘𝐹) ∘ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)))‘𝐴) |
3 | elin 4019 | . . . 4 ⊢ (𝐴 ∈ (𝐹 ∩ (𝐺 ∩ 𝐻)) ↔ (𝐴 ∈ 𝐹 ∧ 𝐴 ∈ (𝐺 ∩ 𝐻))) | |
4 | pjadj2co.1 | . . . . . . . 8 ⊢ 𝐹 ∈ Cℋ | |
5 | 4 | cheli 28678 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ ℋ) |
6 | 5 | adantr 474 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ (𝐺 ∩ 𝐻)) → 𝐴 ∈ ℋ) |
7 | 4 | pjfi 29152 | . . . . . . 7 ⊢ (projℎ‘𝐹): ℋ⟶ ℋ |
8 | pjadj2co.2 | . . . . . . . . 9 ⊢ 𝐺 ∈ Cℋ | |
9 | 8 | pjfi 29152 | . . . . . . . 8 ⊢ (projℎ‘𝐺): ℋ⟶ ℋ |
10 | pjadj2co.3 | . . . . . . . . 9 ⊢ 𝐻 ∈ Cℋ | |
11 | 10 | pjfi 29152 | . . . . . . . 8 ⊢ (projℎ‘𝐻): ℋ⟶ ℋ |
12 | 9, 11 | hocofi 29214 | . . . . . . 7 ⊢ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)): ℋ⟶ ℋ |
13 | 7, 12 | hocoi 29212 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (((projℎ‘𝐹) ∘ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)))‘𝐴) = ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴))) |
14 | 6, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ (𝐺 ∩ 𝐻)) → (((projℎ‘𝐹) ∘ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)))‘𝐴) = ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴))) |
15 | 8, 10 | pjclem4a 29646 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐺 ∩ 𝐻) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴) |
16 | eleq1 2847 | . . . . . . . . 9 ⊢ ((((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴 → ((((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹)) | |
17 | pjid 29143 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Cℋ ∧ (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) ∈ 𝐹) → ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) = (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) | |
18 | 4, 17 | mpan 680 | . . . . . . . . 9 ⊢ ((((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) ∈ 𝐹 → ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) = (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) |
19 | 16, 18 | syl6bir 246 | . . . . . . . 8 ⊢ ((((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴 → (𝐴 ∈ 𝐹 → ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) = (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴))) |
20 | eqeq2 2789 | . . . . . . . 8 ⊢ ((((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴 → (((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) = (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) ↔ ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) = 𝐴)) | |
21 | 19, 20 | sylibd 231 | . . . . . . 7 ⊢ ((((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴 → (𝐴 ∈ 𝐹 → ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) = 𝐴)) |
22 | 15, 21 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (𝐺 ∩ 𝐻) → (𝐴 ∈ 𝐹 → ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) = 𝐴)) |
23 | 22 | impcom 398 | . . . . 5 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ (𝐺 ∩ 𝐻)) → ((projℎ‘𝐹)‘(((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴)) = 𝐴) |
24 | 14, 23 | eqtrd 2814 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ (𝐺 ∩ 𝐻)) → (((projℎ‘𝐹) ∘ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)))‘𝐴) = 𝐴) |
25 | 3, 24 | sylbi 209 | . . 3 ⊢ (𝐴 ∈ (𝐹 ∩ (𝐺 ∩ 𝐻)) → (((projℎ‘𝐹) ∘ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)))‘𝐴) = 𝐴) |
26 | inass 4044 | . . 3 ⊢ ((𝐹 ∩ 𝐺) ∩ 𝐻) = (𝐹 ∩ (𝐺 ∩ 𝐻)) | |
27 | 25, 26 | eleq2s 2877 | . 2 ⊢ (𝐴 ∈ ((𝐹 ∩ 𝐺) ∩ 𝐻) → (((projℎ‘𝐹) ∘ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)))‘𝐴) = 𝐴) |
28 | 2, 27 | syl5eq 2826 | 1 ⊢ (𝐴 ∈ ((𝐹 ∩ 𝐺) ∩ 𝐻) → ((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∩ cin 3791 ∘ ccom 5361 ‘cfv 6137 ℋchba 28365 Cℋ cch 28375 projℎcpjh 28383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cc 9594 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 ax-hilex 28445 ax-hfvadd 28446 ax-hvcom 28447 ax-hvass 28448 ax-hv0cl 28449 ax-hvaddid 28450 ax-hfvmul 28451 ax-hvmulid 28452 ax-hvmulass 28453 ax-hvdistr1 28454 ax-hvdistr2 28455 ax-hvmul0 28456 ax-hfi 28525 ax-his1 28528 ax-his2 28529 ax-his3 28530 ax-his4 28531 ax-hcompl 28648 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-omul 7850 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-acn 9103 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-q 12101 df-rp 12143 df-xneg 12262 df-xadd 12263 df-xmul 12264 df-ioo 12496 df-ico 12498 df-icc 12499 df-fz 12649 df-fzo 12790 df-fl 12917 df-seq 13125 df-exp 13184 df-hash 13442 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-clim 14636 df-rlim 14637 df-sum 14834 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-starv 16364 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-unif 16372 df-hom 16373 df-cco 16374 df-rest 16480 df-topn 16481 df-0g 16499 df-gsum 16500 df-topgen 16501 df-pt 16502 df-prds 16505 df-xrs 16559 df-qtop 16564 df-imas 16565 df-xps 16567 df-mre 16643 df-mrc 16644 df-acs 16646 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-submnd 17733 df-mulg 17939 df-cntz 18144 df-cmn 18592 df-psmet 20145 df-xmet 20146 df-met 20147 df-bl 20148 df-mopn 20149 df-fbas 20150 df-fg 20151 df-cnfld 20154 df-top 21117 df-topon 21134 df-topsp 21156 df-bases 21169 df-cld 21242 df-ntr 21243 df-cls 21244 df-nei 21321 df-cn 21450 df-cnp 21451 df-lm 21452 df-haus 21538 df-tx 21785 df-hmeo 21978 df-fil 22069 df-fm 22161 df-flim 22162 df-flf 22163 df-xms 22544 df-ms 22545 df-tms 22546 df-cfil 23472 df-cau 23473 df-cmet 23474 df-grpo 27937 df-gid 27938 df-ginv 27939 df-gdiv 27940 df-ablo 27989 df-vc 28003 df-nv 28036 df-va 28039 df-ba 28040 df-sm 28041 df-0v 28042 df-vs 28043 df-nmcv 28044 df-ims 28045 df-dip 28145 df-ssp 28166 df-ph 28257 df-cbn 28308 df-hnorm 28414 df-hba 28415 df-hvsub 28417 df-hlim 28418 df-hcau 28419 df-sh 28653 df-ch 28667 df-oc 28698 df-ch0 28699 df-shs 28756 df-pjh 28843 |
This theorem is referenced by: pj3si 29655 |
Copyright terms: Public domain | W3C validator |