MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldmreon Structured version   Visualization version   GIF version

Theorem cldmreon 23123
Description: The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
cldmreon (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))

Proof of Theorem cldmreon
StepHypRef Expression
1 topontop 22940 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
2 eqid 2740 . . . 4 𝐽 = 𝐽
32cldmre 23107 . . 3 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
41, 3syl 17 . 2 (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
5 toponuni 22941 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
65fveq2d 6924 . 2 (𝐽 ∈ (TopOn‘𝐵) → (Moore‘𝐵) = (Moore‘ 𝐽))
74, 6eleqtrrd 2847 1 (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   cuni 4931  cfv 6573  Moorecmre 17640  Topctop 22920  TopOnctopon 22937  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-mre 17644  df-top 22921  df-topon 22938  df-cld 23048
This theorem is referenced by:  iscldtop  23124  clduni  48580
  Copyright terms: Public domain W3C validator