| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldmreon | Structured version Visualization version GIF version | ||
| Description: The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| cldmreon | ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22849 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 2 | eqid 2735 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | cldmre 23014 | . . 3 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) |
| 5 | toponuni 22850 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 6 | 5 | fveq2d 6879 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Moore‘𝐵) = (Moore‘∪ 𝐽)) |
| 7 | 4, 6 | eleqtrrd 2837 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4883 ‘cfv 6530 Moorecmre 17592 Topctop 22829 TopOnctopon 22846 Clsdccld 22952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 df-mre 17596 df-top 22830 df-topon 22847 df-cld 22955 |
| This theorem is referenced by: iscldtop 23031 clduni 48823 |
| Copyright terms: Public domain | W3C validator |