MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldmreon Structured version   Visualization version   GIF version

Theorem cldmreon 23014
Description: The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
cldmreon (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))

Proof of Theorem cldmreon
StepHypRef Expression
1 topontop 22833 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
2 eqid 2729 . . . 4 𝐽 = 𝐽
32cldmre 22998 . . 3 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
41, 3syl 17 . 2 (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
5 toponuni 22834 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
65fveq2d 6844 . 2 (𝐽 ∈ (TopOn‘𝐵) → (Moore‘𝐵) = (Moore‘ 𝐽))
74, 6eleqtrrd 2831 1 (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   cuni 4867  cfv 6499  Moorecmre 17519  Topctop 22813  TopOnctopon 22830  Clsdccld 22936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-mre 17523  df-top 22814  df-topon 22831  df-cld 22939
This theorem is referenced by:  iscldtop  23015  clduni  48882
  Copyright terms: Public domain W3C validator