![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldmreon | Structured version Visualization version GIF version |
Description: The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
cldmreon | ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22808 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
2 | eqid 2728 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | cldmre 22975 | . . 3 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) |
5 | toponuni 22809 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
6 | 5 | fveq2d 6895 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Moore‘𝐵) = (Moore‘∪ 𝐽)) |
7 | 4, 6 | eleqtrrd 2832 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∪ cuni 4903 ‘cfv 6542 Moorecmre 17555 Topctop 22788 TopOnctopon 22805 Clsdccld 22913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-mre 17559 df-top 22789 df-topon 22806 df-cld 22916 |
This theorem is referenced by: iscldtop 22992 clduni 47913 |
Copyright terms: Public domain | W3C validator |