MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldmreon Structured version   Visualization version   GIF version

Theorem cldmreon 23030
Description: The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
cldmreon (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))

Proof of Theorem cldmreon
StepHypRef Expression
1 topontop 22849 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
2 eqid 2735 . . . 4 𝐽 = 𝐽
32cldmre 23014 . . 3 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
41, 3syl 17 . 2 (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
5 toponuni 22850 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
65fveq2d 6879 . 2 (𝐽 ∈ (TopOn‘𝐵) → (Moore‘𝐵) = (Moore‘ 𝐽))
74, 6eleqtrrd 2837 1 (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   cuni 4883  cfv 6530  Moorecmre 17592  Topctop 22829  TopOnctopon 22846  Clsdccld 22952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fn 6533  df-fv 6538  df-mre 17596  df-top 22830  df-topon 22847  df-cld 22955
This theorem is referenced by:  iscldtop  23031  clduni  48823
  Copyright terms: Public domain W3C validator