MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprcl2 Structured version   Visualization version   GIF version

Theorem cnprcl2 21956
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnprcl2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)

Proof of Theorem cnprcl2
StepHypRef Expression
1 eqid 2758 . . . 4 𝐽 = 𝐽
21cnprcl 21950 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
32adantl 485 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
4 toponuni 21619 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54adantr 484 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
63, 5eleqtrrd 2855 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111   cuni 4801  cfv 6339  (class class class)co 7155  TopOnctopon 21615   CnP ccnp 21930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7698  df-2nd 7699  df-map 8423  df-top 21599  df-topon 21616  df-cnp 21933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator