| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnpf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnpf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | cnpf 23132 | . . 3 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 4 | toponuni 22799 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 5 | 4 | feq2d 6636 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∪ 𝐽⟶𝑌)) |
| 6 | toponuni 22799 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | |
| 7 | 6 | feq3d 6637 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘𝑌) → (𝐹:∪ 𝐽⟶𝑌 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
| 8 | 5, 7 | sylan9bb 509 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
| 9 | 3, 8 | imbitrrid 246 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋⟶𝑌)) |
| 10 | 9 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∪ cuni 4858 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 TopOnctopon 22795 CnP ccnp 23110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-top 22779 df-topon 22796 df-cnp 23113 |
| This theorem is referenced by: iscnp4 23148 1stccnp 23347 txcnp 23505 ptcnplem 23506 ptcnp 23507 cnpflf2 23885 cnpflf 23886 flfcnp 23889 flfcnp2 23892 cnpfcf 23926 ghmcnp 24000 metcnpi3 24432 limcvallem 25770 cnplimc 25786 limccnp 25790 limccnp2 25791 ftc1lem3 25943 |
| Copyright terms: Public domain | W3C validator |