![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnpf2 | Structured version Visualization version GIF version |
Description: A continuous function at point π is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnpf2 | β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β ((π½ CnP πΎ)βπ)) β πΉ:πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ βͺ π½ = βͺ π½ | |
2 | eqid 2731 | . . . 4 β’ βͺ πΎ = βͺ πΎ | |
3 | 1, 2 | cnpf 23071 | . . 3 β’ (πΉ β ((π½ CnP πΎ)βπ) β πΉ:βͺ π½βΆβͺ πΎ) |
4 | toponuni 22736 | . . . . 5 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
5 | 4 | feq2d 6703 | . . . 4 β’ (π½ β (TopOnβπ) β (πΉ:πβΆπ β πΉ:βͺ π½βΆπ)) |
6 | toponuni 22736 | . . . . 5 β’ (πΎ β (TopOnβπ) β π = βͺ πΎ) | |
7 | 6 | feq3d 6704 | . . . 4 β’ (πΎ β (TopOnβπ) β (πΉ:βͺ π½βΆπ β πΉ:βͺ π½βΆβͺ πΎ)) |
8 | 5, 7 | sylan9bb 509 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ:πβΆπ β πΉ:βͺ π½βΆβͺ πΎ)) |
9 | 3, 8 | imbitrrid 245 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β ((π½ CnP πΎ)βπ) β πΉ:πβΆπ)) |
10 | 9 | 3impia 1116 | 1 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β ((π½ CnP πΎ)βπ)) β πΉ:πβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 β wcel 2105 βͺ cuni 4908 βΆwf 6539 βcfv 6543 (class class class)co 7412 TopOnctopon 22732 CnP ccnp 23049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-map 8828 df-top 22716 df-topon 22733 df-cnp 23052 |
This theorem is referenced by: iscnp4 23087 1stccnp 23286 txcnp 23444 ptcnplem 23445 ptcnp 23446 cnpflf2 23824 cnpflf 23825 flfcnp 23828 flfcnp2 23831 cnpfcf 23865 ghmcnp 23939 metcnpi3 24375 limcvallem 25720 cnplimc 25736 limccnp 25740 limccnp2 25741 ftc1lem3 25893 |
Copyright terms: Public domain | W3C validator |