|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cnpf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| cnpf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2736 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | cnpf 23256 | . . 3 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:∪ 𝐽⟶∪ 𝐾) | 
| 4 | toponuni 22921 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 5 | 4 | feq2d 6721 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∪ 𝐽⟶𝑌)) | 
| 6 | toponuni 22921 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | |
| 7 | 6 | feq3d 6722 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘𝑌) → (𝐹:∪ 𝐽⟶𝑌 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) | 
| 8 | 5, 7 | sylan9bb 509 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) | 
| 9 | 3, 8 | imbitrrid 246 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋⟶𝑌)) | 
| 10 | 9 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ∪ cuni 4906 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 TopOnctopon 22917 CnP ccnp 23234 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 df-top 22901 df-topon 22918 df-cnp 23237 | 
| This theorem is referenced by: iscnp4 23272 1stccnp 23471 txcnp 23629 ptcnplem 23630 ptcnp 23631 cnpflf2 24009 cnpflf 24010 flfcnp 24013 flfcnp2 24016 cnpfcf 24050 ghmcnp 24124 metcnpi3 24560 limcvallem 25907 cnplimc 25923 limccnp 25927 limccnp2 25928 ftc1lem3 26080 | 
| Copyright terms: Public domain | W3C validator |