MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpf2 Structured version   Visualization version   GIF version

Theorem cnpf2 21950
Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnpf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)

Proof of Theorem cnpf2
StepHypRef Expression
1 eqid 2758 . . . 4 𝐽 = 𝐽
2 eqid 2758 . . . 4 𝐾 = 𝐾
31, 2cnpf 21947 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹: 𝐽 𝐾)
4 toponuni 21614 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54feq2d 6484 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋𝑌𝐹: 𝐽𝑌))
6 toponuni 21614 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
76feq3d 6485 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → (𝐹: 𝐽𝑌𝐹: 𝐽 𝐾))
85, 7sylan9bb 513 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹:𝑋𝑌𝐹: 𝐽 𝐾))
93, 8syl5ibr 249 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋𝑌))
1093impia 1114 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wcel 2111   cuni 4798  wf 6331  cfv 6335  (class class class)co 7150  TopOnctopon 21610   CnP ccnp 21925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-map 8418  df-top 21594  df-topon 21611  df-cnp 21928
This theorem is referenced by:  iscnp4  21963  1stccnp  22162  txcnp  22320  ptcnplem  22321  ptcnp  22322  cnpflf2  22700  cnpflf  22701  flfcnp  22704  flfcnp2  22707  cnpfcf  22741  ghmcnp  22815  metcnpi3  23248  limcvallem  24570  cnplimc  24586  limccnp  24590  limccnp2  24591  ftc1lem3  24737
  Copyright terms: Public domain W3C validator