MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpf2 Structured version   Visualization version   GIF version

Theorem cnpf2 21850
Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnpf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)

Proof of Theorem cnpf2
StepHypRef Expression
1 eqid 2819 . . . 4 𝐽 = 𝐽
2 eqid 2819 . . . 4 𝐾 = 𝐾
31, 2cnpf 21847 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹: 𝐽 𝐾)
4 toponuni 21514 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54feq2d 6493 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋𝑌𝐹: 𝐽𝑌))
6 toponuni 21514 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
76feq3d 6494 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → (𝐹: 𝐽𝑌𝐹: 𝐽 𝐾))
85, 7sylan9bb 512 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹:𝑋𝑌𝐹: 𝐽 𝐾))
93, 8syl5ibr 248 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋𝑌))
1093impia 1111 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081  wcel 2107   cuni 4830  wf 6344  cfv 6348  (class class class)co 7148  TopOnctopon 21510   CnP ccnp 21825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-map 8400  df-top 21494  df-topon 21511  df-cnp 21828
This theorem is referenced by:  iscnp4  21863  1stccnp  22062  txcnp  22220  ptcnplem  22221  ptcnp  22222  cnpflf2  22600  cnpflf  22601  flfcnp  22604  flfcnp2  22607  cnpfcf  22641  ghmcnp  22715  metcnpi3  23148  limcvallem  24461  cnplimc  24477  limccnp  24481  limccnp2  24482  ftc1lem3  24627
  Copyright terms: Public domain W3C validator