MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpf2 Structured version   Visualization version   GIF version

Theorem cnpf2 22382
Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnpf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)

Proof of Theorem cnpf2
StepHypRef Expression
1 eqid 2739 . . . 4 𝐽 = 𝐽
2 eqid 2739 . . . 4 𝐾 = 𝐾
31, 2cnpf 22379 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹: 𝐽 𝐾)
4 toponuni 22044 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54feq2d 6582 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋𝑌𝐹: 𝐽𝑌))
6 toponuni 22044 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
76feq3d 6583 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → (𝐹: 𝐽𝑌𝐹: 𝐽 𝐾))
85, 7sylan9bb 509 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹:𝑋𝑌𝐹: 𝐽 𝐾))
93, 8syl5ibr 245 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋𝑌))
1093impia 1115 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2109   cuni 4844  wf 6426  cfv 6430  (class class class)co 7268  TopOnctopon 22040   CnP ccnp 22357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-map 8591  df-top 22024  df-topon 22041  df-cnp 22360
This theorem is referenced by:  iscnp4  22395  1stccnp  22594  txcnp  22752  ptcnplem  22753  ptcnp  22754  cnpflf2  23132  cnpflf  23133  flfcnp  23136  flfcnp2  23139  cnpfcf  23173  ghmcnp  23247  metcnpi3  23683  limcvallem  25016  cnplimc  25032  limccnp  25036  limccnp2  25037  ftc1lem3  25183
  Copyright terms: Public domain W3C validator