| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnpf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnpf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2731 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | cnpf 23162 | . . 3 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 4 | toponuni 22829 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 5 | 4 | feq2d 6635 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∪ 𝐽⟶𝑌)) |
| 6 | toponuni 22829 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | |
| 7 | 6 | feq3d 6636 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘𝑌) → (𝐹:∪ 𝐽⟶𝑌 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
| 8 | 5, 7 | sylan9bb 509 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
| 9 | 3, 8 | imbitrrid 246 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋⟶𝑌)) |
| 10 | 9 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∪ cuni 4856 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 TopOnctopon 22825 CnP ccnp 23140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-top 22809 df-topon 22826 df-cnp 23143 |
| This theorem is referenced by: iscnp4 23178 1stccnp 23377 txcnp 23535 ptcnplem 23536 ptcnp 23537 cnpflf2 23915 cnpflf 23916 flfcnp 23919 flfcnp2 23922 cnpfcf 23956 ghmcnp 24030 metcnpi3 24461 limcvallem 25799 cnplimc 25815 limccnp 25819 limccnp2 25820 ftc1lem3 25972 |
| Copyright terms: Public domain | W3C validator |