![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnpf2 | Structured version Visualization version GIF version |
Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnpf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2800 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2800 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | cnpf 21379 | . . 3 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
4 | toponuni 21046 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
5 | 4 | feq2d 6243 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∪ 𝐽⟶𝑌)) |
6 | toponuni 21046 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | |
7 | 6 | feq3d 6244 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘𝑌) → (𝐹:∪ 𝐽⟶𝑌 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
8 | 5, 7 | sylan9bb 506 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
9 | 3, 8 | syl5ibr 238 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋⟶𝑌)) |
10 | 9 | 3impia 1146 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 ∪ cuni 4629 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 TopOnctopon 21042 CnP ccnp 21357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-1st 7402 df-2nd 7403 df-map 8098 df-top 21026 df-topon 21043 df-cnp 21360 |
This theorem is referenced by: iscnp4 21395 1stccnp 21593 txcnp 21751 ptcnplem 21752 ptcnp 21753 cnpflf2 22131 cnpflf 22132 flfcnp 22135 flfcnp2 22138 cnpfcf 22172 ghmcnp 22245 metcnpi3 22678 limcvallem 23975 cnplimc 23991 limccnp 23995 limccnp2 23996 ftc1lem3 24141 |
Copyright terms: Public domain | W3C validator |