MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprcl Structured version   Visualization version   GIF version

Theorem cnprcl 22971
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
iscnp2.1 𝑋 = 𝐽
Assertion
Ref Expression
cnprcl (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)

Proof of Theorem cnprcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscnp2.1 . . . 4 𝑋 = 𝐽
2 eqid 2730 . . . 4 𝐾 = 𝐾
31, 2iscnp2 22965 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
43simplbi 496 . 2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋))
54simp3d 1142 1 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  wrex 3068  wss 3949   cuni 4909  cima 5680  wf 6540  cfv 6544  (class class class)co 7413  Topctop 22617   CnP ccnp 22951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7979  df-2nd 7980  df-map 8826  df-top 22618  df-topon 22635  df-cnp 22954
This theorem is referenced by:  cnprcl2  22977  cnpco  22993  cnprest2  23016  ghmcnp  23841  metcnpi  24275  metcnpi2  24276  metcnpi3  24277  limccnp  25642  limccnp2  25643  fouriercnp  45242
  Copyright terms: Public domain W3C validator