MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprcl Structured version   Visualization version   GIF version

Theorem cnprcl 23188
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
iscnp2.1 𝑋 = 𝐽
Assertion
Ref Expression
cnprcl (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)

Proof of Theorem cnprcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscnp2.1 . . . 4 𝑋 = 𝐽
2 eqid 2736 . . . 4 𝐾 = 𝐾
31, 2iscnp2 23182 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
43simplbi 497 . 2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋))
54simp3d 1144 1 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   cuni 4888  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  Topctop 22836   CnP ccnp 23168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-top 22837  df-topon 22854  df-cnp 23171
This theorem is referenced by:  cnprcl2  23194  cnpco  23210  cnprest2  23233  ghmcnp  24058  metcnpi  24488  metcnpi2  24489  metcnpi3  24490  limccnp  25849  limccnp2  25850  fouriercnp  46222
  Copyright terms: Public domain W3C validator