MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprcl Structured version   Visualization version   GIF version

Theorem cnprcl 21847
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
iscnp2.1 𝑋 = 𝐽
Assertion
Ref Expression
cnprcl (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)

Proof of Theorem cnprcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscnp2.1 . . . 4 𝑋 = 𝐽
2 eqid 2821 . . . 4 𝐾 = 𝐾
31, 2iscnp2 21841 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
43simplbi 500 . 2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋))
54simp3d 1140 1 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3936   cuni 4832  cima 5553  wf 6346  cfv 6350  (class class class)co 7150  Topctop 21495   CnP ccnp 21827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-top 21496  df-topon 21513  df-cnp 21830
This theorem is referenced by:  cnprcl2  21853  cnpco  21869  cnprest2  21892  ghmcnp  22717  metcnpi  23148  metcnpi2  23149  metcnpi3  23150  limccnp  24483  limccnp2  24484  fouriercnp  42504
  Copyright terms: Public domain W3C validator