MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpval Structured version   Visualization version   GIF version

Theorem cnpval 23260
Description: The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐽   𝑓,𝐾,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑃,𝑓,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦

Proof of Theorem cnpval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cnpfval 23258 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))}))
21fveq1d 6909 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐽 CnP 𝐾)‘𝑃) = ((𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})‘𝑃))
3 fveq2 6907 . . . . . . . 8 (𝑣 = 𝑃 → (𝑓𝑣) = (𝑓𝑃))
43eleq1d 2824 . . . . . . 7 (𝑣 = 𝑃 → ((𝑓𝑣) ∈ 𝑦 ↔ (𝑓𝑃) ∈ 𝑦))
5 eleq1 2827 . . . . . . . . 9 (𝑣 = 𝑃 → (𝑣𝑥𝑃𝑥))
65anbi1d 631 . . . . . . . 8 (𝑣 = 𝑃 → ((𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)))
76rexbidv 3177 . . . . . . 7 (𝑣 = 𝑃 → (∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)))
84, 7imbi12d 344 . . . . . 6 (𝑣 = 𝑃 → (((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)) ↔ ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))))
98ralbidv 3176 . . . . 5 (𝑣 = 𝑃 → (∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))))
109rabbidv 3441 . . . 4 (𝑣 = 𝑃 → {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
11 eqid 2735 . . . 4 (𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))}) = (𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
12 ovex 7464 . . . . 5 (𝑌m 𝑋) ∈ V
1312rabex 5345 . . . 4 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} ∈ V
1410, 11, 13fvmpt 7016 . . 3 (𝑃𝑋 → ((𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})‘𝑃) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
152, 14sylan9eq 2795 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
16153impa 1109 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  wss 3963  cmpt 5231  cima 5692  cfv 6563  (class class class)co 7431  m cmap 8865  TopOnctopon 22932   CnP ccnp 23249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-top 22916  df-topon 22933  df-cnp 23252
This theorem is referenced by:  iscnp  23261
  Copyright terms: Public domain W3C validator