MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpval Structured version   Visualization version   GIF version

Theorem cnpval 23265
Description: The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐽   𝑓,𝐾,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑃,𝑓,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦

Proof of Theorem cnpval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cnpfval 23263 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))}))
21fveq1d 6922 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐽 CnP 𝐾)‘𝑃) = ((𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})‘𝑃))
3 fveq2 6920 . . . . . . . 8 (𝑣 = 𝑃 → (𝑓𝑣) = (𝑓𝑃))
43eleq1d 2829 . . . . . . 7 (𝑣 = 𝑃 → ((𝑓𝑣) ∈ 𝑦 ↔ (𝑓𝑃) ∈ 𝑦))
5 eleq1 2832 . . . . . . . . 9 (𝑣 = 𝑃 → (𝑣𝑥𝑃𝑥))
65anbi1d 630 . . . . . . . 8 (𝑣 = 𝑃 → ((𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)))
76rexbidv 3185 . . . . . . 7 (𝑣 = 𝑃 → (∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)))
84, 7imbi12d 344 . . . . . 6 (𝑣 = 𝑃 → (((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)) ↔ ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))))
98ralbidv 3184 . . . . 5 (𝑣 = 𝑃 → (∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))))
109rabbidv 3451 . . . 4 (𝑣 = 𝑃 → {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
11 eqid 2740 . . . 4 (𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))}) = (𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
12 ovex 7481 . . . . 5 (𝑌m 𝑋) ∈ V
1312rabex 5357 . . . 4 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} ∈ V
1410, 11, 13fvmpt 7029 . . 3 (𝑃𝑋 → ((𝑣𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})‘𝑃) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
152, 14sylan9eq 2800 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
16153impa 1110 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976  cmpt 5249  cima 5703  cfv 6573  (class class class)co 7448  m cmap 8884  TopOnctopon 22937   CnP ccnp 23254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-top 22921  df-topon 22938  df-cnp 23257
This theorem is referenced by:  iscnp  23266
  Copyright terms: Public domain W3C validator