MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpval Structured version   Visualization version   GIF version

Theorem cnpval 22740
Description: The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
Distinct variable groups:   π‘₯,𝑓,𝑦,𝐽   𝑓,𝐾,π‘₯,𝑦   𝑓,𝑋,π‘₯,𝑦   𝑃,𝑓,π‘₯,𝑦   𝑓,π‘Œ,π‘₯,𝑦

Proof of Theorem cnpval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cnpfval 22738 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 CnP 𝐾) = (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))}))
21fveq1d 6894 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})β€˜π‘ƒ))
3 fveq2 6892 . . . . . . . 8 (𝑣 = 𝑃 β†’ (π‘“β€˜π‘£) = (π‘“β€˜π‘ƒ))
43eleq1d 2819 . . . . . . 7 (𝑣 = 𝑃 β†’ ((π‘“β€˜π‘£) ∈ 𝑦 ↔ (π‘“β€˜π‘ƒ) ∈ 𝑦))
5 eleq1 2822 . . . . . . . . 9 (𝑣 = 𝑃 β†’ (𝑣 ∈ π‘₯ ↔ 𝑃 ∈ π‘₯))
65anbi1d 631 . . . . . . . 8 (𝑣 = 𝑃 β†’ ((𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)))
76rexbidv 3179 . . . . . . 7 (𝑣 = 𝑃 β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)))
84, 7imbi12d 345 . . . . . 6 (𝑣 = 𝑃 β†’ (((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)) ↔ ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))))
98ralbidv 3178 . . . . 5 (𝑣 = 𝑃 β†’ (βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))))
109rabbidv 3441 . . . 4 (𝑣 = 𝑃 β†’ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
11 eqid 2733 . . . 4 (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))}) = (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
12 ovex 7442 . . . . 5 (π‘Œ ↑m 𝑋) ∈ V
1312rabex 5333 . . . 4 {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ∈ V
1410, 11, 13fvmpt 6999 . . 3 (𝑃 ∈ 𝑋 β†’ ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
152, 14sylan9eq 2793 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
16153impa 1111 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433   βŠ† wss 3949   ↦ cmpt 5232   β€œ cima 5680  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  TopOnctopon 22412   CnP ccnp 22729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-top 22396  df-topon 22413  df-cnp 22732
This theorem is referenced by:  iscnp  22741
  Copyright terms: Public domain W3C validator