MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp Structured version   Visualization version   GIF version

Theorem iscnp 22640
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscnp ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
Distinct variable groups:   π‘₯,𝑦,𝐽   π‘₯,𝐾,𝑦   π‘₯,𝑋,𝑦   π‘₯,𝐹,𝑦   π‘₯,𝑃,𝑦   π‘₯,π‘Œ,𝑦

Proof of Theorem iscnp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnpval 22639 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
21eleq2d 2818 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ 𝐹 ∈ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))}))
3 fveq1 6861 . . . . . . . 8 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘ƒ) = (πΉβ€˜π‘ƒ))
43eleq1d 2817 . . . . . . 7 (𝑓 = 𝐹 β†’ ((π‘“β€˜π‘ƒ) ∈ 𝑦 ↔ (πΉβ€˜π‘ƒ) ∈ 𝑦))
5 imaeq1 6028 . . . . . . . . . 10 (𝑓 = 𝐹 β†’ (𝑓 β€œ π‘₯) = (𝐹 β€œ π‘₯))
65sseq1d 3993 . . . . . . . . 9 (𝑓 = 𝐹 β†’ ((𝑓 β€œ π‘₯) βŠ† 𝑦 ↔ (𝐹 β€œ π‘₯) βŠ† 𝑦))
76anbi2d 629 . . . . . . . 8 (𝑓 = 𝐹 β†’ ((𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
87rexbidv 3177 . . . . . . 7 (𝑓 = 𝐹 β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
94, 8imbi12d 344 . . . . . 6 (𝑓 = 𝐹 β†’ (((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)) ↔ ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
109ralbidv 3176 . . . . 5 (𝑓 = 𝐹 β†’ (βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
1110elrab 3663 . . . 4 (𝐹 ∈ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ↔ (𝐹 ∈ (π‘Œ ↑m 𝑋) ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
12 toponmax 22327 . . . . . 6 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ ∈ 𝐾)
13 toponmax 22327 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
14 elmapg 8800 . . . . . 6 ((π‘Œ ∈ 𝐾 ∧ 𝑋 ∈ 𝐽) β†’ (𝐹 ∈ (π‘Œ ↑m 𝑋) ↔ 𝐹:π‘‹βŸΆπ‘Œ))
1512, 13, 14syl2anr 597 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (π‘Œ ↑m 𝑋) ↔ 𝐹:π‘‹βŸΆπ‘Œ))
1615anbi1d 630 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ ((𝐹 ∈ (π‘Œ ↑m 𝑋) ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
1711, 16bitrid 282 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
18173adant3 1132 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
192, 18bitrd 278 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3060  βˆƒwrex 3069  {crab 3418   βŠ† wss 3928   β€œ cima 5656  βŸΆwf 6512  β€˜cfv 6516  (class class class)co 7377   ↑m cmap 8787  TopOnctopon 22311   CnP ccnp 22628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3419  df-v 3461  df-sbc 3758  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-br 5126  df-opab 5188  df-mpt 5209  df-id 5551  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-fv 6524  df-ov 7380  df-oprab 7381  df-mpo 7382  df-map 8789  df-top 22295  df-topon 22312  df-cnp 22631
This theorem is referenced by:  iscnp2  22642  iscnp3  22647  tgcnp  22656  iscnp4  22666  cnconst2  22686  cnpresti  22691  cnprest  22692  cnprest2  22693  1stccnp  22865  cnpflf2  23403  symgtgp  23509  ghmcnp  23518  ellimc2  25293  xrlimcnp  26370  poimir  36218  icccncfext  44281
  Copyright terms: Public domain W3C validator