| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofid1 | Structured version Visualization version GIF version | ||
| Description: Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofid1a.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofid1a.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofid1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cofid1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| cofid1.k | ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) |
| cofid1.o | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| Ref | Expression |
|---|---|
| cofid1 | ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) | |
| 2 | 1 | func1st 49202 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐾, 𝐿〉) = 𝐾) |
| 3 | cofid1.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 4 | 3 | func1st 49202 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 5 | 4 | fveq1d 6830 | . . 3 ⊢ (𝜑 → ((1st ‘〈𝐹, 𝐺〉)‘𝑋) = (𝐹‘𝑋)) |
| 6 | 2, 5 | fveq12d 6835 | . 2 ⊢ (𝜑 → ((1st ‘〈𝐾, 𝐿〉)‘((1st ‘〈𝐹, 𝐺〉)‘𝑋)) = (𝐾‘(𝐹‘𝑋))) |
| 7 | cofid1a.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 8 | cofid1a.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 9 | cofid1a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | df-br 5094 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 11 | 3, 10 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 12 | df-br 5094 | . . . 4 ⊢ (𝐾(𝐸 Func 𝐷)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐸 Func 𝐷)) | |
| 13 | 1, 12 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐸 Func 𝐷)) |
| 14 | cofid1.o | . . 3 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) | |
| 15 | 7, 8, 9, 11, 13, 14 | cofid1a 49237 | . 2 ⊢ (𝜑 → ((1st ‘〈𝐾, 𝐿〉)‘((1st ‘〈𝐹, 𝐺〉)‘𝑋)) = 𝑋) |
| 16 | 6, 15 | eqtr3d 2770 | 1 ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 Basecbs 17122 Func cfunc 17763 idfunccidfu 17764 ∘func ccofu 17765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ixp 8828 df-func 17767 df-idfu 17768 df-cofu 17769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |