| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofid1 | Structured version Visualization version GIF version | ||
| Description: Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofid1a.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofid1a.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofid1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cofid1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| cofid1.k | ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) |
| cofid1.o | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| Ref | Expression |
|---|---|
| cofid1 | ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) | |
| 2 | 1 | func1st 49108 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐾, 𝐿〉) = 𝐾) |
| 3 | cofid1.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 4 | 3 | func1st 49108 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 5 | 4 | fveq1d 6824 | . . 3 ⊢ (𝜑 → ((1st ‘〈𝐹, 𝐺〉)‘𝑋) = (𝐹‘𝑋)) |
| 6 | 2, 5 | fveq12d 6829 | . 2 ⊢ (𝜑 → ((1st ‘〈𝐾, 𝐿〉)‘((1st ‘〈𝐹, 𝐺〉)‘𝑋)) = (𝐾‘(𝐹‘𝑋))) |
| 7 | cofid1a.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 8 | cofid1a.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 9 | cofid1a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | df-br 5092 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 11 | 3, 10 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 12 | df-br 5092 | . . . 4 ⊢ (𝐾(𝐸 Func 𝐷)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐸 Func 𝐷)) | |
| 13 | 1, 12 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐸 Func 𝐷)) |
| 14 | cofid1.o | . . 3 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) | |
| 15 | 7, 8, 9, 11, 13, 14 | cofid1a 49143 | . 2 ⊢ (𝜑 → ((1st ‘〈𝐾, 𝐿〉)‘((1st ‘〈𝐹, 𝐺〉)‘𝑋)) = 𝑋) |
| 16 | 6, 15 | eqtr3d 2768 | 1 ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 Basecbs 17117 Func cfunc 17758 idfunccidfu 17759 ∘func ccofu 17760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-func 17762 df-idfu 17763 df-cofu 17764 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |