| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofid1 | Structured version Visualization version GIF version | ||
| Description: Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofid1a.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofid1a.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofid1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cofid1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| cofid1.k | ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) |
| cofid1.o | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| Ref | Expression |
|---|---|
| cofid1 | ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) | |
| 2 | 1 | func1st 49063 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐾, 𝐿〉) = 𝐾) |
| 3 | cofid1.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 4 | 3 | func1st 49063 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 5 | 4 | fveq1d 6828 | . . 3 ⊢ (𝜑 → ((1st ‘〈𝐹, 𝐺〉)‘𝑋) = (𝐹‘𝑋)) |
| 6 | 2, 5 | fveq12d 6833 | . 2 ⊢ (𝜑 → ((1st ‘〈𝐾, 𝐿〉)‘((1st ‘〈𝐹, 𝐺〉)‘𝑋)) = (𝐾‘(𝐹‘𝑋))) |
| 7 | cofid1a.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 8 | cofid1a.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 9 | cofid1a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | df-br 5096 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 11 | 3, 10 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 12 | df-br 5096 | . . . 4 ⊢ (𝐾(𝐸 Func 𝐷)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐸 Func 𝐷)) | |
| 13 | 1, 12 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐸 Func 𝐷)) |
| 14 | cofid1.o | . . 3 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) | |
| 15 | 7, 8, 9, 11, 13, 14 | cofid1a 49098 | . 2 ⊢ (𝜑 → ((1st ‘〈𝐾, 𝐿〉)‘((1st ‘〈𝐹, 𝐺〉)‘𝑋)) = 𝑋) |
| 16 | 6, 15 | eqtr3d 2766 | 1 ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 Basecbs 17138 Func cfunc 17779 idfunccidfu 17780 ∘func ccofu 17781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-func 17783 df-idfu 17784 df-cofu 17785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |