MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddfn Structured version   Visualization version   GIF version

Theorem naddfn 8692
Description: Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddfn +no Fn (On × On)

Proof of Theorem naddfn
Dummy variables 𝑤 𝑎 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nadd 8683 . 2 +no = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st𝑧)} × (2nd𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st𝑧) × {(2nd𝑧)})) ⊆ 𝑤)}))
21on2recsfn 8684 1 +no Fn (On × On)
Colors of variables: wff setvar class
Syntax hints:  wa 395  {crab 3420  Vcvv 3464  wss 3931  {csn 4606   cint 4927   × cxp 5657  cima 5662  Oncon0 6357   Fn wfn 6531  cfv 6536  cmpo 7412  1st c1st 7991  2nd c2nd 7992   +no cnadd 8682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-1st 7993  df-2nd 7994  df-frecs 8285  df-nadd 8683
This theorem is referenced by:  naddcllem  8693  naddov2  8696  naddf  8698  naddunif  8710  naddasslem1  8711  naddasslem2  8712
  Copyright terms: Public domain W3C validator