| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddfn | Structured version Visualization version GIF version | ||
| Description: Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.) |
| Ref | Expression |
|---|---|
| naddfn | ⊢ +no Fn (On × On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nadd 8581 | . 2 ⊢ +no = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ ∩ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st ‘𝑧)} × (2nd ‘𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st ‘𝑧) × {(2nd ‘𝑧)})) ⊆ 𝑤)})) | |
| 2 | 1 | on2recsfn 8582 | 1 ⊢ +no Fn (On × On) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 {crab 3395 Vcvv 3436 ⊆ wss 3897 {csn 4573 ∩ cint 4895 × cxp 5612 “ cima 5617 Oncon0 6306 Fn wfn 6476 ‘cfv 6481 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 +no cnadd 8580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-1st 7921 df-2nd 7922 df-frecs 8211 df-nadd 8581 |
| This theorem is referenced by: naddcllem 8591 naddov2 8594 naddf 8596 naddunif 8608 naddasslem1 8609 naddasslem2 8610 |
| Copyright terms: Public domain | W3C validator |