MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddfn Structured version   Visualization version   GIF version

Theorem naddfn 8673
Description: Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddfn +no Fn (On × On)

Proof of Theorem naddfn
Dummy variables 𝑤 𝑎 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nadd 8664 . 2 +no = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st𝑧)} × (2nd𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st𝑧) × {(2nd𝑧)})) ⊆ 𝑤)}))
21on2recsfn 8665 1 +no Fn (On × On)
Colors of variables: wff setvar class
Syntax hints:  wa 396  {crab 3432  Vcvv 3474  wss 3948  {csn 4628   cint 4950   × cxp 5674  cima 5679  Oncon0 6364   Fn wfn 6538  cfv 6543  cmpo 7410  1st c1st 7972  2nd c2nd 7973   +no cnadd 8663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-1st 7974  df-2nd 7975  df-frecs 8265  df-nadd 8664
This theorem is referenced by:  naddcllem  8674  naddov2  8677  naddf  8679  naddunif  8691  naddasslem1  8692  naddasslem2  8693
  Copyright terms: Public domain W3C validator