| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddfn | Structured version Visualization version GIF version | ||
| Description: Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.) |
| Ref | Expression |
|---|---|
| naddfn | ⊢ +no Fn (On × On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nadd 8683 | . 2 ⊢ +no = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ ∩ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st ‘𝑧)} × (2nd ‘𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st ‘𝑧) × {(2nd ‘𝑧)})) ⊆ 𝑤)})) | |
| 2 | 1 | on2recsfn 8684 | 1 ⊢ +no Fn (On × On) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 {crab 3420 Vcvv 3464 ⊆ wss 3931 {csn 4606 ∩ cint 4927 × cxp 5657 “ cima 5662 Oncon0 6357 Fn wfn 6531 ‘cfv 6536 ∈ cmpo 7412 1st c1st 7991 2nd c2nd 7992 +no cnadd 8682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-1st 7993 df-2nd 7994 df-frecs 8285 df-nadd 8683 |
| This theorem is referenced by: naddcllem 8693 naddov2 8696 naddf 8698 naddunif 8710 naddasslem1 8711 naddasslem2 8712 |
| Copyright terms: Public domain | W3C validator |