![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddfn | Structured version Visualization version GIF version |
Description: Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.) |
Ref | Expression |
---|---|
naddfn | ⊢ +no Fn (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nadd 8687 | . 2 ⊢ +no = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ ∩ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st ‘𝑧)} × (2nd ‘𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st ‘𝑧) × {(2nd ‘𝑧)})) ⊆ 𝑤)})) | |
2 | 1 | on2recsfn 8688 | 1 ⊢ +no Fn (On × On) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 {crab 3429 Vcvv 3471 ⊆ wss 3947 {csn 4629 ∩ cint 4949 × cxp 5676 “ cima 5681 Oncon0 6369 Fn wfn 6543 ‘cfv 6548 ∈ cmpo 7422 1st c1st 7991 2nd c2nd 7992 +no cnadd 8686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-1st 7993 df-2nd 7994 df-frecs 8287 df-nadd 8687 |
This theorem is referenced by: naddcllem 8697 naddov2 8700 naddf 8702 naddunif 8714 naddasslem1 8715 naddasslem2 8716 |
Copyright terms: Public domain | W3C validator |