![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddfn | Structured version Visualization version GIF version |
Description: Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.) |
Ref | Expression |
---|---|
naddfn | ⊢ +no Fn (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nadd 8613 | . 2 ⊢ +no = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ ∩ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st ‘𝑧)} × (2nd ‘𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st ‘𝑧) × {(2nd ‘𝑧)})) ⊆ 𝑤)})) | |
2 | 1 | on2recsfn 8614 | 1 ⊢ +no Fn (On × On) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 {crab 3408 Vcvv 3446 ⊆ wss 3911 {csn 4587 ∩ cint 4908 × cxp 5632 “ cima 5637 Oncon0 6318 Fn wfn 6492 ‘cfv 6497 ∈ cmpo 7360 1st c1st 7920 2nd c2nd 7921 +no cnadd 8612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-1st 7922 df-2nd 7923 df-frecs 8213 df-nadd 8613 |
This theorem is referenced by: naddcllem 8623 naddov2 8626 naddf 8628 naddunif 8638 naddasslem1 8639 naddasslem2 8640 |
Copyright terms: Public domain | W3C validator |