![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphorthcom | Structured version Visualization version GIF version |
Description: Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom 20497. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
cphorthcom | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphphl 23494 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
2 | eqid 2773 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | cphipcj.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
4 | cphipcj.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2773 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
6 | 2, 3, 4, 5 | iporthcom 20497 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = (0g‘(Scalar‘𝑊)) ↔ (𝐵 , 𝐴) = (0g‘(Scalar‘𝑊)))) |
7 | 1, 6 | syl3an1 1144 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = (0g‘(Scalar‘𝑊)) ↔ (𝐵 , 𝐴) = (0g‘(Scalar‘𝑊)))) |
8 | cphclm 23512 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
9 | 2 | clm0 23395 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊))) |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊))) |
11 | 10 | 3ad2ant1 1114 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 0 = (0g‘(Scalar‘𝑊))) |
12 | 11 | eqeq2d 2783 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐴 , 𝐵) = (0g‘(Scalar‘𝑊)))) |
13 | 11 | eqeq2d 2783 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐵 , 𝐴) = 0 ↔ (𝐵 , 𝐴) = (0g‘(Scalar‘𝑊)))) |
14 | 7, 12, 13 | 3bitr4d 303 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ‘cfv 6186 (class class class)co 6975 0cc0 10334 Basecbs 16338 Scalarcsca 16423 ·𝑖cip 16425 0gc0g 16568 PreHilcphl 20486 ℂModcclm 23385 ℂPreHilccph 23489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-addf 10413 ax-mulf 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-tpos 7694 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-map 8207 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-z 11793 df-dec 11911 df-uz 12058 df-fz 12708 df-seq 13184 df-exp 13244 df-struct 16340 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-mulr 16434 df-starv 16435 df-sca 16436 df-vsca 16437 df-ip 16438 df-tset 16439 df-ple 16440 df-ds 16442 df-unif 16443 df-0g 16570 df-mgm 17723 df-sgrp 17765 df-mnd 17776 df-mhm 17816 df-grp 17907 df-subg 18073 df-ghm 18140 df-cmn 18681 df-mgp 18976 df-ur 18988 df-ring 19035 df-cring 19036 df-oppr 19109 df-dvdsr 19127 df-unit 19128 df-rnghom 19203 df-drng 19240 df-subrg 19269 df-staf 19351 df-srng 19352 df-lmod 19371 df-lmhm 19529 df-lvec 19610 df-sra 19679 df-rgmod 19680 df-cnfld 20264 df-phl 20488 df-nlm 22915 df-clm 23386 df-cph 23491 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |