![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphsubdi | Structured version Visualization version GIF version |
Description: Distributive law for inner product subtraction. Complex version of ipsubdi 21000. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
cphsubdir.m | ⊢ − = (-g‘𝑊) |
Ref | Expression |
---|---|
cphsubdi | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵) − (𝐴 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphphl 24487 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
2 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | cphipcj.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
4 | cphipcj.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
5 | cphsubdir.m | . . . 4 ⊢ − = (-g‘𝑊) | |
6 | eqid 2738 | . . . 4 ⊢ (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊)) | |
7 | 2, 3, 4, 5, 6 | ipsubdi 21000 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)(-g‘(Scalar‘𝑊))(𝐴 , 𝐶))) |
8 | 1, 7 | sylan 581 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)(-g‘(Scalar‘𝑊))(𝐴 , 𝐶))) |
9 | cphclm 24505 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
10 | 9 | adantr 482 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ ℂMod) |
11 | 1 | adantr 482 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) |
12 | simpr1 1195 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
13 | simpr2 1196 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
14 | eqid 2738 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
15 | 2, 3, 4, 14 | ipcl 20990 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊))) |
16 | 11, 12, 13, 15 | syl3anc 1372 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊))) |
17 | simpr3 1197 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
18 | 2, 3, 4, 14 | ipcl 20990 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) |
19 | 11, 12, 17, 18 | syl3anc 1372 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) |
20 | 2, 14 | clmsub 24395 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐵) − (𝐴 , 𝐶)) = ((𝐴 , 𝐵)(-g‘(Scalar‘𝑊))(𝐴 , 𝐶))) |
21 | 10, 16, 19, 20 | syl3anc 1372 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , 𝐵) − (𝐴 , 𝐶)) = ((𝐴 , 𝐵)(-g‘(Scalar‘𝑊))(𝐴 , 𝐶))) |
22 | 8, 21 | eqtr4d 2781 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵) − (𝐴 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ‘cfv 6494 (class class class)co 7352 − cmin 11344 Basecbs 17043 Scalarcsca 17096 ·𝑖cip 17098 -gcsg 18710 PreHilcphl 20981 ℂModcclm 24377 ℂPreHilccph 24482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 ax-cnex 11066 ax-resscn 11067 ax-1cn 11068 ax-icn 11069 ax-addcl 11070 ax-addrcl 11071 ax-mulcl 11072 ax-mulrcl 11073 ax-mulcom 11074 ax-addass 11075 ax-mulass 11076 ax-distr 11077 ax-i2m1 11078 ax-1ne0 11079 ax-1rid 11080 ax-rnegex 11081 ax-rrecex 11082 ax-cnre 11083 ax-pre-lttri 11084 ax-pre-lttrn 11085 ax-pre-ltadd 11086 ax-pre-mulgt0 11087 ax-addf 11089 ax-mulf 11090 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7308 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7796 df-1st 7914 df-2nd 7915 df-tpos 8150 df-frecs 8205 df-wrecs 8236 df-recs 8310 df-rdg 8349 df-1o 8405 df-er 8607 df-map 8726 df-en 8843 df-dom 8844 df-sdom 8845 df-fin 8846 df-pnf 11150 df-mnf 11151 df-xr 11152 df-ltxr 11153 df-le 11154 df-sub 11346 df-neg 11347 df-div 11772 df-nn 12113 df-2 12175 df-3 12176 df-4 12177 df-5 12178 df-6 12179 df-7 12180 df-8 12181 df-9 12182 df-n0 12373 df-z 12459 df-dec 12578 df-uz 12723 df-fz 13380 df-seq 13862 df-exp 13923 df-struct 16979 df-sets 16996 df-slot 17014 df-ndx 17026 df-base 17044 df-ress 17073 df-plusg 17106 df-mulr 17107 df-starv 17108 df-sca 17109 df-vsca 17110 df-ip 17111 df-tset 17112 df-ple 17113 df-ds 17115 df-unif 17116 df-0g 17283 df-mgm 18457 df-sgrp 18506 df-mnd 18517 df-mhm 18561 df-grp 18711 df-minusg 18712 df-sbg 18713 df-subg 18884 df-ghm 18965 df-cmn 19523 df-mgp 19856 df-ur 19873 df-ring 19920 df-cring 19921 df-oppr 20002 df-dvdsr 20023 df-unit 20024 df-rnghom 20099 df-drng 20140 df-subrg 20173 df-staf 20257 df-srng 20258 df-lmod 20277 df-lmhm 20436 df-lvec 20517 df-sra 20586 df-rgmod 20587 df-cnfld 20750 df-phl 20983 df-nlm 23894 df-clm 24378 df-cph 24484 |
This theorem is referenced by: ipcnlem2 24560 pjthlem1 24753 |
Copyright terms: Public domain | W3C validator |