Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphipeq0 | Structured version Visualization version GIF version |
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. Complex version of ipeq0 20600. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
cphip0l.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
cphipeq0 | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 0 ↔ 𝐴 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphclm 24086 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
2 | eqid 2737 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | 2 | clm0 23969 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊))) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊))) |
5 | 4 | adantr 484 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → 0 = (0g‘(Scalar‘𝑊))) |
6 | 5 | eqeq2d 2748 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 0 ↔ (𝐴 , 𝐴) = (0g‘(Scalar‘𝑊)))) |
7 | cphphl 24068 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
8 | cphipcj.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
9 | cphipcj.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
10 | eqid 2737 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
11 | cphip0l.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
12 | 2, 8, 9, 10, 11 | ipeq0 20600 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
13 | 7, 12 | sylan 583 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
14 | 6, 13 | bitrd 282 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 0 ↔ 𝐴 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 0cc0 10729 Basecbs 16760 Scalarcsca 16805 ·𝑖cip 16807 0gc0g 16944 PreHilcphl 20586 ℂModcclm 23959 ℂPreHilccph 24063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-seq 13575 df-exp 13636 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-subg 18540 df-ghm 18620 df-cmn 19172 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-drng 19769 df-subrg 19798 df-lmod 19901 df-lmhm 20059 df-lvec 20140 df-sra 20209 df-rgmod 20210 df-cnfld 20364 df-phl 20588 df-nlm 23484 df-clm 23960 df-cph 24065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |