![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cph2di | Structured version Visualization version GIF version |
Description: Distributive law for inner product. Complex version of ip2di 20384. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
cphdir.P | ⊢ + = (+g‘𝑊) |
cph2di.1 | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
cph2di.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
cph2di.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
cph2di.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
cph2di.5 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
cph2di | ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2777 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | cphipcj.h | . . 3 ⊢ , = (·𝑖‘𝑊) | |
3 | cphipcj.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | cphdir.P | . . 3 ⊢ + = (+g‘𝑊) | |
5 | eqid 2777 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
6 | cph2di.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
7 | cphphl 23378 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ PreHil) |
9 | cph2di.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | cph2di.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
11 | cph2di.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
12 | cph2di.5 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
13 | 1, 2, 3, 4, 5, 8, 9, 10, 11, 12 | ip2di 20384 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(+g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))) |
14 | cphclm 23396 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
15 | 1 | clmadd 23281 | . . . 4 ⊢ (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊))) |
16 | 6, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → + = (+g‘(Scalar‘𝑊))) |
17 | 16 | oveqd 6939 | . . 3 ⊢ (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) = ((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))) |
18 | 16 | oveqd 6939 | . . 3 ⊢ (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) = ((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))) |
19 | 16, 17, 18 | oveq123d 6943 | . 2 ⊢ (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(+g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))) |
20 | 13, 19 | eqtr4d 2816 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ‘cfv 6135 (class class class)co 6922 + caddc 10275 Basecbs 16255 +gcplusg 16338 Scalarcsca 16341 ·𝑖cip 16343 PreHilcphl 20367 ℂModcclm 23269 ℂPreHilccph 23373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-seq 13120 df-exp 13179 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-grp 17812 df-minusg 17813 df-subg 17975 df-ghm 18042 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-cring 18937 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-rnghom 19104 df-drng 19141 df-subrg 19170 df-staf 19237 df-srng 19238 df-lmod 19257 df-lmhm 19417 df-lvec 19498 df-sra 19569 df-rgmod 19570 df-cnfld 20143 df-phl 20369 df-nlm 22799 df-clm 23270 df-cph 23375 |
This theorem is referenced by: nmparlem 23445 cphipval2 23447 |
Copyright terms: Public domain | W3C validator |