MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cph2di Structured version   Visualization version   GIF version

Theorem cph2di 23414
Description: Distributive law for inner product. Complex version of ip2di 20384. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphdir.P + = (+g𝑊)
cph2di.1 (𝜑𝑊 ∈ ℂPreHil)
cph2di.2 (𝜑𝐴𝑉)
cph2di.3 (𝜑𝐵𝑉)
cph2di.4 (𝜑𝐶𝑉)
cph2di.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
cph2di (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem cph2di
StepHypRef Expression
1 eqid 2777 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 cphipcj.h . . 3 , = (·𝑖𝑊)
3 cphipcj.v . . 3 𝑉 = (Base‘𝑊)
4 cphdir.P . . 3 + = (+g𝑊)
5 eqid 2777 . . 3 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
6 cph2di.1 . . . 4 (𝜑𝑊 ∈ ℂPreHil)
7 cphphl 23378 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
86, 7syl 17 . . 3 (𝜑𝑊 ∈ PreHil)
9 cph2di.2 . . 3 (𝜑𝐴𝑉)
10 cph2di.3 . . 3 (𝜑𝐵𝑉)
11 cph2di.4 . . 3 (𝜑𝐶𝑉)
12 cph2di.5 . . 3 (𝜑𝐷𝑉)
131, 2, 3, 4, 5, 8, 9, 10, 11, 12ip2di 20384 . 2 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(+g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
14 cphclm 23396 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
151clmadd 23281 . . . 4 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
166, 14, 153syl 18 . . 3 (𝜑 → + = (+g‘(Scalar‘𝑊)))
1716oveqd 6939 . . 3 (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) = ((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷)))
1816oveqd 6939 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) = ((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
1916, 17, 18oveq123d 6943 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(+g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
2013, 19eqtr4d 2816 1 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922   + caddc 10275  Basecbs 16255  +gcplusg 16338  Scalarcsca 16341  ·𝑖cip 16343  PreHilcphl 20367  ℂModcclm 23269  ℂPreHilccph 23373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-seq 13120  df-exp 13179  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-minusg 17813  df-subg 17975  df-ghm 18042  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-rnghom 19104  df-drng 19141  df-subrg 19170  df-staf 19237  df-srng 19238  df-lmod 19257  df-lmhm 19417  df-lvec 19498  df-sra 19569  df-rgmod 19570  df-cnfld 20143  df-phl 20369  df-nlm 22799  df-clm 23270  df-cph 23375
This theorem is referenced by:  nmparlem  23445  cphipval2  23447
  Copyright terms: Public domain W3C validator