MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cph2di Structured version   Visualization version   GIF version

Theorem cph2di 24276
Description: Distributive law for inner product. Complex version of ip2di 20758. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphdir.P + = (+g𝑊)
cph2di.1 (𝜑𝑊 ∈ ℂPreHil)
cph2di.2 (𝜑𝐴𝑉)
cph2di.3 (𝜑𝐵𝑉)
cph2di.4 (𝜑𝐶𝑉)
cph2di.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
cph2di (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem cph2di
StepHypRef Expression
1 eqid 2738 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 cphipcj.h . . 3 , = (·𝑖𝑊)
3 cphipcj.v . . 3 𝑉 = (Base‘𝑊)
4 cphdir.P . . 3 + = (+g𝑊)
5 eqid 2738 . . 3 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
6 cph2di.1 . . . 4 (𝜑𝑊 ∈ ℂPreHil)
7 cphphl 24240 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
86, 7syl 17 . . 3 (𝜑𝑊 ∈ PreHil)
9 cph2di.2 . . 3 (𝜑𝐴𝑉)
10 cph2di.3 . . 3 (𝜑𝐵𝑉)
11 cph2di.4 . . 3 (𝜑𝐶𝑉)
12 cph2di.5 . . 3 (𝜑𝐷𝑉)
131, 2, 3, 4, 5, 8, 9, 10, 11, 12ip2di 20758 . 2 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(+g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
14 cphclm 24258 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
151clmadd 24143 . . . 4 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
166, 14, 153syl 18 . . 3 (𝜑 → + = (+g‘(Scalar‘𝑊)))
1716oveqd 7272 . . 3 (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) = ((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷)))
1816oveqd 7272 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) = ((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
1916, 17, 18oveq123d 7276 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(+g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
2013, 19eqtr4d 2781 1 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255   + caddc 10805  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891  ·𝑖cip 16893  PreHilcphl 20741  ℂModcclm 24131  ℂPreHilccph 24235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-exp 13711  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-subg 18667  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-phl 20743  df-nlm 23648  df-clm 24132  df-cph 24237
This theorem is referenced by:  cphpyth  24285  nmparlem  24308  cphipval2  24310
  Copyright terms: Public domain W3C validator