MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cph2subdi Structured version   Visualization version   GIF version

Theorem cph2subdi 25086
Description: Distributive law for inner product subtraction. Complex version of ip2subdi 21529. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphsubdir.m = (-g𝑊)
cph2subdi.1 (𝜑𝑊 ∈ ℂPreHil)
cph2subdi.2 (𝜑𝐴𝑉)
cph2subdi.3 (𝜑𝐵𝑉)
cph2subdi.4 (𝜑𝐶𝑉)
cph2subdi.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
cph2subdi (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem cph2subdi
StepHypRef Expression
1 cph2subdi.1 . . . . . 6 (𝜑𝑊 ∈ ℂPreHil)
2 cphclm 25065 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
31, 2syl 17 . . . . 5 (𝜑𝑊 ∈ ℂMod)
4 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
54clmadd 24950 . . . . 5 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
63, 5syl 17 . . . 4 (𝜑 → + = (+g‘(Scalar‘𝑊)))
76oveqd 7386 . . 3 (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) = ((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷)))
86oveqd 7386 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) = ((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
97, 8oveq12d 7387 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
10 cphphl 25047 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
111, 10syl 17 . . . . 5 (𝜑𝑊 ∈ PreHil)
12 cph2subdi.2 . . . . 5 (𝜑𝐴𝑉)
13 cph2subdi.4 . . . . 5 (𝜑𝐶𝑉)
14 cphipcj.h . . . . . 6 , = (·𝑖𝑊)
15 cphipcj.v . . . . . 6 𝑉 = (Base‘𝑊)
16 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
174, 14, 15, 16ipcl 21518 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
1811, 12, 13, 17syl3anc 1373 . . . 4 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
19 cph2subdi.3 . . . . 5 (𝜑𝐵𝑉)
20 cph2subdi.5 . . . . 5 (𝜑𝐷𝑉)
214, 14, 15, 16ipcl 21518 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
2211, 19, 20, 21syl3anc 1373 . . . 4 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
234, 16clmacl 24960 . . . 4 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)))
243, 18, 22, 23syl3anc 1373 . . 3 (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)))
254, 14, 15, 16ipcl 21518 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
2611, 12, 20, 25syl3anc 1373 . . . 4 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
274, 14, 15, 16ipcl 21518 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
2811, 19, 13, 27syl3anc 1373 . . . 4 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
294, 16clmacl 24960 . . . 4 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊)))
303, 26, 28, 29syl3anc 1373 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊)))
314, 16clmsub 24956 . . 3 ((𝑊 ∈ ℂMod ∧ ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))))
323, 24, 30, 31syl3anc 1373 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))))
33 cphsubdir.m . . 3 = (-g𝑊)
34 eqid 2729 . . 3 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
35 eqid 2729 . . 3 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
364, 14, 15, 33, 34, 35, 11, 12, 19, 13, 20ip2subdi 21529 . 2 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
379, 32, 363eqtr4rd 2775 1 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369   + caddc 11047  cmin 11381  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199  ·𝑖cip 17201  -gcsg 18843  PreHilcphl 21509  ℂModcclm 24938  ℂPreHilccph 25042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-seq 13943  df-exp 14003  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-ghm 19121  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-rhm 20357  df-subrg 20455  df-drng 20616  df-staf 20724  df-srng 20725  df-lmod 20744  df-lmhm 20905  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-cnfld 21241  df-phl 21511  df-nlm 24450  df-clm 24939  df-cph 25044
This theorem is referenced by:  nmparlem  25115  cphipval2  25117
  Copyright terms: Public domain W3C validator