MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cph2subdi Structured version   Visualization version   GIF version

Theorem cph2subdi 24279
Description: Distributive law for inner product subtraction. Complex version of ip2subdi 20761. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphsubdir.m = (-g𝑊)
cph2subdi.1 (𝜑𝑊 ∈ ℂPreHil)
cph2subdi.2 (𝜑𝐴𝑉)
cph2subdi.3 (𝜑𝐵𝑉)
cph2subdi.4 (𝜑𝐶𝑉)
cph2subdi.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
cph2subdi (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem cph2subdi
StepHypRef Expression
1 cph2subdi.1 . . . . . 6 (𝜑𝑊 ∈ ℂPreHil)
2 cphclm 24258 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
31, 2syl 17 . . . . 5 (𝜑𝑊 ∈ ℂMod)
4 eqid 2738 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
54clmadd 24143 . . . . 5 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
63, 5syl 17 . . . 4 (𝜑 → + = (+g‘(Scalar‘𝑊)))
76oveqd 7272 . . 3 (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) = ((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷)))
86oveqd 7272 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) = ((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
97, 8oveq12d 7273 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
10 cphphl 24240 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
111, 10syl 17 . . . . 5 (𝜑𝑊 ∈ PreHil)
12 cph2subdi.2 . . . . 5 (𝜑𝐴𝑉)
13 cph2subdi.4 . . . . 5 (𝜑𝐶𝑉)
14 cphipcj.h . . . . . 6 , = (·𝑖𝑊)
15 cphipcj.v . . . . . 6 𝑉 = (Base‘𝑊)
16 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
174, 14, 15, 16ipcl 20750 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
1811, 12, 13, 17syl3anc 1369 . . . 4 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
19 cph2subdi.3 . . . . 5 (𝜑𝐵𝑉)
20 cph2subdi.5 . . . . 5 (𝜑𝐷𝑉)
214, 14, 15, 16ipcl 20750 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
2211, 19, 20, 21syl3anc 1369 . . . 4 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
234, 16clmacl 24153 . . . 4 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)))
243, 18, 22, 23syl3anc 1369 . . 3 (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)))
254, 14, 15, 16ipcl 20750 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
2611, 12, 20, 25syl3anc 1369 . . . 4 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
274, 14, 15, 16ipcl 20750 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
2811, 19, 13, 27syl3anc 1369 . . . 4 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
294, 16clmacl 24153 . . . 4 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊)))
303, 26, 28, 29syl3anc 1369 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊)))
314, 16clmsub 24149 . . 3 ((𝑊 ∈ ℂMod ∧ ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))))
323, 24, 30, 31syl3anc 1369 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))))
33 cphsubdir.m . . 3 = (-g𝑊)
34 eqid 2738 . . 3 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
35 eqid 2738 . . 3 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
364, 14, 15, 33, 34, 35, 11, 12, 19, 13, 20ip2subdi 20761 . 2 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
379, 32, 363eqtr4rd 2789 1 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255   + caddc 10805  cmin 11135  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891  ·𝑖cip 16893  -gcsg 18494  PreHilcphl 20741  ℂModcclm 24131  ℂPreHilccph 24235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-exp 13711  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-phl 20743  df-nlm 23648  df-clm 24132  df-cph 24237
This theorem is referenced by:  nmparlem  24308  cphipval2  24310
  Copyright terms: Public domain W3C validator