| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cph2subdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product subtraction. Complex version of ip2subdi 21553. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
| cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
| cphsubdir.m | ⊢ − = (-g‘𝑊) |
| cph2subdi.1 | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
| cph2subdi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| cph2subdi.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| cph2subdi.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| cph2subdi.5 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| cph2subdi | ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cph2subdi.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
| 2 | cphclm 25089 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | 4 | clmadd 24974 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊))) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → + = (+g‘(Scalar‘𝑊))) |
| 7 | 6 | oveqd 7404 | . . 3 ⊢ (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) = ((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))) |
| 8 | 6 | oveqd 7404 | . . 3 ⊢ (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) = ((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))) |
| 9 | 7, 8 | oveq12d 7405 | . 2 ⊢ (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))) |
| 10 | cphphl 25071 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 11 | 1, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| 12 | cph2subdi.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 13 | cph2subdi.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 14 | cphipcj.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 15 | cphipcj.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 17 | 4, 14, 15, 16 | ipcl 21542 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) |
| 18 | 11, 12, 13, 17 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) |
| 19 | cph2subdi.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 20 | cph2subdi.5 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 21 | 4, 14, 15, 16 | ipcl 21542 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊))) |
| 22 | 11, 19, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊))) |
| 23 | 4, 16 | clmacl 24984 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊))) |
| 24 | 3, 18, 22, 23 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊))) |
| 25 | 4, 14, 15, 16 | ipcl 21542 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊))) |
| 26 | 11, 12, 20, 25 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊))) |
| 27 | 4, 14, 15, 16 | ipcl 21542 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) |
| 28 | 11, 19, 13, 27 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) |
| 29 | 4, 16 | clmacl 24984 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊))) |
| 30 | 3, 26, 28, 29 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊))) |
| 31 | 4, 16 | clmsub 24980 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶)))) |
| 32 | 3, 24, 30, 31 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶)))) |
| 33 | cphsubdir.m | . . 3 ⊢ − = (-g‘𝑊) | |
| 34 | eqid 2729 | . . 3 ⊢ (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊)) | |
| 35 | eqid 2729 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 36 | 4, 14, 15, 33, 34, 35, 11, 12, 19, 13, 20 | ip2subdi 21553 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))) |
| 37 | 9, 32, 36 | 3eqtr4rd 2775 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 + caddc 11071 − cmin 11405 Basecbs 17179 +gcplusg 17220 Scalarcsca 17223 ·𝑖cip 17225 -gcsg 18867 PreHilcphl 21533 ℂModcclm 24962 ℂPreHilccph 25066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-seq 13967 df-exp 14027 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-rhm 20381 df-subrg 20479 df-drng 20640 df-staf 20748 df-srng 20749 df-lmod 20768 df-lmhm 20929 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-phl 21535 df-nlm 24474 df-clm 24963 df-cph 25068 |
| This theorem is referenced by: nmparlem 25139 cphipval2 25141 |
| Copyright terms: Public domain | W3C validator |