MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cph2subdi Structured version   Visualization version   GIF version

Theorem cph2subdi 25258
Description: Distributive law for inner product subtraction. Complex version of ip2subdi 21680. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphsubdir.m = (-g𝑊)
cph2subdi.1 (𝜑𝑊 ∈ ℂPreHil)
cph2subdi.2 (𝜑𝐴𝑉)
cph2subdi.3 (𝜑𝐵𝑉)
cph2subdi.4 (𝜑𝐶𝑉)
cph2subdi.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
cph2subdi (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem cph2subdi
StepHypRef Expression
1 cph2subdi.1 . . . . . 6 (𝜑𝑊 ∈ ℂPreHil)
2 cphclm 25237 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
31, 2syl 17 . . . . 5 (𝜑𝑊 ∈ ℂMod)
4 eqid 2735 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
54clmadd 25121 . . . . 5 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
63, 5syl 17 . . . 4 (𝜑 → + = (+g‘(Scalar‘𝑊)))
76oveqd 7448 . . 3 (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) = ((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷)))
86oveqd 7448 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) = ((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
97, 8oveq12d 7449 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
10 cphphl 25219 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
111, 10syl 17 . . . . 5 (𝜑𝑊 ∈ PreHil)
12 cph2subdi.2 . . . . 5 (𝜑𝐴𝑉)
13 cph2subdi.4 . . . . 5 (𝜑𝐶𝑉)
14 cphipcj.h . . . . . 6 , = (·𝑖𝑊)
15 cphipcj.v . . . . . 6 𝑉 = (Base‘𝑊)
16 eqid 2735 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
174, 14, 15, 16ipcl 21669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
1811, 12, 13, 17syl3anc 1370 . . . 4 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
19 cph2subdi.3 . . . . 5 (𝜑𝐵𝑉)
20 cph2subdi.5 . . . . 5 (𝜑𝐷𝑉)
214, 14, 15, 16ipcl 21669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
2211, 19, 20, 21syl3anc 1370 . . . 4 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
234, 16clmacl 25131 . . . 4 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐷) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)))
243, 18, 22, 23syl3anc 1370 . . 3 (𝜑 → ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)))
254, 14, 15, 16ipcl 21669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
2611, 12, 20, 25syl3anc 1370 . . . 4 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)))
274, 14, 15, 16ipcl 21669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
2811, 19, 13, 27syl3anc 1370 . . . 4 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
294, 16clmacl 25131 . . . 4 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐷) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊)))
303, 26, 28, 29syl3anc 1370 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊)))
314, 16clmsub 25127 . . 3 ((𝑊 ∈ ℂMod ∧ ((𝐴 , 𝐶) + (𝐵 , 𝐷)) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘(Scalar‘𝑊))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))))
323, 24, 30, 31syl3anc 1370 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷) + (𝐵 , 𝐶))))
33 cphsubdir.m . . 3 = (-g𝑊)
34 eqid 2735 . . 3 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
35 eqid 2735 . . 3 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
364, 14, 15, 33, 34, 35, 11, 12, 19, 13, 20ip2subdi 21680 . 2 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶)(+g‘(Scalar‘𝑊))(𝐵 , 𝐷))(-g‘(Scalar‘𝑊))((𝐴 , 𝐷)(+g‘(Scalar‘𝑊))(𝐵 , 𝐶))))
379, 32, 363eqtr4rd 2786 1 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431   + caddc 11156  cmin 11490  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301  ·𝑖cip 17303  -gcsg 18966  PreHilcphl 21660  ℂModcclm 25109  ℂPreHilccph 25214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-seq 14040  df-exp 14100  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-rhm 20489  df-subrg 20587  df-drng 20748  df-staf 20857  df-srng 20858  df-lmod 20877  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-phl 21662  df-nlm 24615  df-clm 25110  df-cph 25216
This theorem is referenced by:  nmparlem  25287  cphipval2  25289
  Copyright terms: Public domain W3C validator