MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubdir Structured version   Visualization version   GIF version

Theorem cphsubdir 23531
Description: Distributive law for inner product subtraction. Complex version of ipsubdir 20504. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphsubdir.m = (-g𝑊)
Assertion
Ref Expression
cphsubdir ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶) − (𝐵 , 𝐶)))

Proof of Theorem cphsubdir
StepHypRef Expression
1 cphphl 23494 . . 3 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 eqid 2773 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 cphipcj.h . . . 4 , = (·𝑖𝑊)
4 cphipcj.v . . . 4 𝑉 = (Base‘𝑊)
5 cphsubdir.m . . . 4 = (-g𝑊)
6 eqid 2773 . . . 4 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
72, 3, 4, 5, 6ipsubdir 20504 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)(-g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
81, 7sylan 572 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)(-g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
9 cphclm 23512 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
109adantr 473 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ ℂMod)
111adantr 473 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
12 simpr1 1175 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
13 simpr3 1177 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
14 eqid 2773 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
152, 3, 4, 14ipcl 20495 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
1611, 12, 13, 15syl3anc 1352 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
17 simpr2 1176 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
182, 3, 4, 14ipcl 20495 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
1911, 17, 13, 18syl3anc 1352 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
202, 14clmsub 23403 . . 3 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐶) − (𝐵 , 𝐶)) = ((𝐴 , 𝐶)(-g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
2110, 16, 19, 20syl3anc 1352 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , 𝐶) − (𝐵 , 𝐶)) = ((𝐴 , 𝐶)(-g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
228, 21eqtr4d 2812 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶) − (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  cfv 6186  (class class class)co 6975  cmin 10669  Basecbs 16338  Scalarcsca 16423  ·𝑖cip 16425  -gcsg 17906  PreHilcphl 20486  ℂModcclm 23385  ℂPreHilccph 23489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-addf 10413  ax-mulf 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-tpos 7694  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-5 11505  df-6 11506  df-7 11507  df-8 11508  df-9 11509  df-n0 11707  df-z 11793  df-dec 11911  df-uz 12058  df-fz 12708  df-seq 13184  df-exp 13244  df-struct 16340  df-ndx 16341  df-slot 16342  df-base 16344  df-sets 16345  df-ress 16346  df-plusg 16433  df-mulr 16434  df-starv 16435  df-sca 16436  df-vsca 16437  df-ip 16438  df-tset 16439  df-ple 16440  df-ds 16442  df-unif 16443  df-0g 16570  df-mgm 17723  df-sgrp 17765  df-mnd 17776  df-grp 17907  df-minusg 17908  df-sbg 17909  df-subg 18073  df-ghm 18140  df-cmn 18681  df-mgp 18976  df-ur 18988  df-ring 19035  df-cring 19036  df-oppr 19109  df-dvdsr 19127  df-unit 19128  df-drng 19240  df-subrg 19269  df-lmod 19371  df-lmhm 19529  df-lvec 19610  df-sra 19679  df-rgmod 19680  df-cnfld 20264  df-phl 20488  df-nlm 22915  df-clm 23386  df-cph 23491
This theorem is referenced by:  ipcnlem2  23566  pjthlem1  23759
  Copyright terms: Public domain W3C validator