![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphip0l | Structured version Visualization version GIF version |
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. Complex version of ip0l 20350. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
cphip0l.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
cphip0l | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphphl 23347 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
2 | eqid 2825 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | cphipcj.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
4 | cphipcj.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2825 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
6 | cphip0l.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
7 | 2, 3, 4, 5, 6 | ip0l 20350 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = (0g‘(Scalar‘𝑊))) |
8 | 1, 7 | sylan 575 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = (0g‘(Scalar‘𝑊))) |
9 | cphclm 23365 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
10 | 2 | clm0 23248 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊))) |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊))) |
12 | 11 | adantr 474 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → 0 = (0g‘(Scalar‘𝑊))) |
13 | 8, 12 | eqtr4d 2864 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ‘cfv 6127 (class class class)co 6910 0cc0 10259 Basecbs 16229 Scalarcsca 16315 ·𝑖cip 16317 0gc0g 16460 PreHilcphl 20338 ℂModcclm 23238 ℂPreHilccph 23342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-tpos 7622 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-fz 12627 df-seq 13103 df-exp 13162 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-0g 16462 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-subg 17949 df-ghm 18016 df-cmn 18555 df-mgp 18851 df-ur 18863 df-ring 18910 df-cring 18911 df-oppr 18984 df-dvdsr 19002 df-unit 19003 df-drng 19112 df-subrg 19141 df-lmod 19228 df-lmhm 19388 df-lvec 19469 df-sra 19540 df-rgmod 19541 df-cnfld 20114 df-phl 20340 df-nlm 22768 df-clm 23239 df-cph 23344 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |