![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphass | Structured version Visualization version GIF version |
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. See ipass 21634, his5 31013. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
cphass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphass.k | ⊢ 𝐾 = (Base‘𝐹) |
cphass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
cphass | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 · (𝐵 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphphl 25184 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
2 | cphass.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | cphipcj.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
4 | cphipcj.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
5 | cphass.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
6 | cphass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | eqid 2726 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | 2, 3, 4, 5, 6, 7 | ipass 21634 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴(.r‘𝐹)(𝐵 , 𝐶))) |
9 | 1, 8 | sylan 578 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴(.r‘𝐹)(𝐵 , 𝐶))) |
10 | cphclm 25202 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
11 | 2 | clmmul 25087 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → · = (.r‘𝐹)) |
13 | 12 | adantr 479 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → · = (.r‘𝐹)) |
14 | 13 | oveqd 7430 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 · (𝐵 , 𝐶)) = (𝐴(.r‘𝐹)(𝐵 , 𝐶))) |
15 | 9, 14 | eqtr4d 2769 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 · (𝐵 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6543 (class class class)co 7413 · cmul 11151 Basecbs 17205 .rcmulr 17259 Scalarcsca 17261 ·𝑠 cvsca 17262 ·𝑖cip 17263 PreHilcphl 21613 ℂModcclm 25074 ℂPreHilccph 25179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-addf 11225 ax-mulf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-fz 13530 df-seq 14013 df-exp 14073 df-struct 17141 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-0g 17448 df-mgm 18625 df-sgrp 18704 df-mnd 18720 df-grp 18923 df-minusg 18924 df-subg 19110 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20129 df-ur 20158 df-ring 20211 df-cring 20212 df-oppr 20309 df-dvdsr 20332 df-unit 20333 df-subrg 20546 df-drng 20702 df-lmod 20831 df-lmhm 20993 df-lvec 21074 df-sra 21144 df-rgmod 21145 df-cnfld 21337 df-phl 21615 df-nlm 24580 df-clm 25075 df-cph 25181 |
This theorem is referenced by: cph2ass 25226 cphassi 25227 |
Copyright terms: Public domain | W3C validator |