MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolyval Structured version   Visualization version   GIF version

Theorem bpolyval 15759
Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpolyval ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolyval
Dummy variables 𝑔 𝑚 𝑛 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . . . . . 6 (♯‘dom 𝑐) ∈ V
2 oveq2 7283 . . . . . . 7 (𝑛 = (♯‘dom 𝑐) → (𝑋𝑛) = (𝑋↑(♯‘dom 𝑐)))
3 oveq1 7282 . . . . . . . . 9 (𝑛 = (♯‘dom 𝑐) → (𝑛C𝑚) = ((♯‘dom 𝑐)C𝑚))
4 oveq1 7282 . . . . . . . . . . 11 (𝑛 = (♯‘dom 𝑐) → (𝑛𝑚) = ((♯‘dom 𝑐) − 𝑚))
54oveq1d 7290 . . . . . . . . . 10 (𝑛 = (♯‘dom 𝑐) → ((𝑛𝑚) + 1) = (((♯‘dom 𝑐) − 𝑚) + 1))
65oveq2d 7291 . . . . . . . . 9 (𝑛 = (♯‘dom 𝑐) → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))
73, 6oveq12d 7293 . . . . . . . 8 (𝑛 = (♯‘dom 𝑐) → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = (((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
87sumeq2sdv 15416 . . . . . . 7 (𝑛 = (♯‘dom 𝑐) → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
92, 8oveq12d 7293 . . . . . 6 (𝑛 = (♯‘dom 𝑐) → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))))
101, 9csbie 3868 . . . . 5 (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
11 oveq2 7283 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
12 fveq2 6774 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑐𝑚) = (𝑐𝑘))
13 oveq2 7283 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑛𝑚) = (𝑛𝑘))
1413oveq1d 7290 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑛𝑚) + 1) = ((𝑛𝑘) + 1))
1512, 14oveq12d 7293 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑘) / ((𝑛𝑘) + 1)))
1611, 15oveq12d 7293 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))))
1716cbvsumv 15408 . . . . . . . 8 Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1)))
18 dmeq 5812 . . . . . . . . 9 (𝑐 = 𝑔 → dom 𝑐 = dom 𝑔)
19 fveq1 6773 . . . . . . . . . . . 12 (𝑐 = 𝑔 → (𝑐𝑘) = (𝑔𝑘))
2019oveq1d 7290 . . . . . . . . . . 11 (𝑐 = 𝑔 → ((𝑐𝑘) / ((𝑛𝑘) + 1)) = ((𝑔𝑘) / ((𝑛𝑘) + 1)))
2120oveq2d 7291 . . . . . . . . . 10 (𝑐 = 𝑔 → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2221adantr 481 . . . . . . . . 9 ((𝑐 = 𝑔𝑘 ∈ dom 𝑐) → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2318, 22sumeq12dv 15418 . . . . . . . 8 (𝑐 = 𝑔 → Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2417, 23eqtrid 2790 . . . . . . 7 (𝑐 = 𝑔 → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2524oveq2d 7291 . . . . . 6 (𝑐 = 𝑔 → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2625csbeq2dv 3839 . . . . 5 (𝑐 = 𝑔(♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2710, 26eqtr3id 2792 . . . 4 (𝑐 = 𝑔 → ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))) = (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2818fveq2d 6778 . . . . 5 (𝑐 = 𝑔 → (♯‘dom 𝑐) = (♯‘dom 𝑔))
2928csbeq1d 3836 . . . 4 (𝑐 = 𝑔(♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3027, 29eqtrd 2778 . . 3 (𝑐 = 𝑔 → ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3130cbvmptv 5187 . 2 (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))) = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32 eqid 2738 . 2 wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))))) = wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))))
3331, 32bpolylem 15758 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  csb 3832  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275  wrecscwrecs 8127  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205   / cdiv 11632  0cn0 12233  ...cfz 13239  cexp 13782  Ccbc 14016  chash 14044  Σcsu 15397   BernPoly cbp 15756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-hash 14045  df-sum 15398  df-bpoly 15757
This theorem is referenced by:  bpoly0  15760  bpoly1  15761  bpolycl  15762  bpolysum  15763  bpolydiflem  15764  bpoly2  15767  bpoly3  15768  bpoly4  15769
  Copyright terms: Public domain W3C validator