MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolyval Structured version   Visualization version   GIF version

Theorem bpolyval 15980
Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpolyval ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolyval
Dummy variables 𝑔 𝑚 𝑛 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6894 . . . . . 6 (♯‘dom 𝑐) ∈ V
2 oveq2 7404 . . . . . . 7 (𝑛 = (♯‘dom 𝑐) → (𝑋𝑛) = (𝑋↑(♯‘dom 𝑐)))
3 oveq1 7403 . . . . . . . . 9 (𝑛 = (♯‘dom 𝑐) → (𝑛C𝑚) = ((♯‘dom 𝑐)C𝑚))
4 oveq1 7403 . . . . . . . . . . 11 (𝑛 = (♯‘dom 𝑐) → (𝑛𝑚) = ((♯‘dom 𝑐) − 𝑚))
54oveq1d 7411 . . . . . . . . . 10 (𝑛 = (♯‘dom 𝑐) → ((𝑛𝑚) + 1) = (((♯‘dom 𝑐) − 𝑚) + 1))
65oveq2d 7412 . . . . . . . . 9 (𝑛 = (♯‘dom 𝑐) → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))
73, 6oveq12d 7414 . . . . . . . 8 (𝑛 = (♯‘dom 𝑐) → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = (((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
87sumeq2sdv 15637 . . . . . . 7 (𝑛 = (♯‘dom 𝑐) → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
92, 8oveq12d 7414 . . . . . 6 (𝑛 = (♯‘dom 𝑐) → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))))
101, 9csbie 3927 . . . . 5 (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
11 oveq2 7404 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
12 fveq2 6881 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑐𝑚) = (𝑐𝑘))
13 oveq2 7404 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑛𝑚) = (𝑛𝑘))
1413oveq1d 7411 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑛𝑚) + 1) = ((𝑛𝑘) + 1))
1512, 14oveq12d 7414 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑘) / ((𝑛𝑘) + 1)))
1611, 15oveq12d 7414 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))))
1716cbvsumv 15629 . . . . . . . 8 Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1)))
18 dmeq 5898 . . . . . . . . 9 (𝑐 = 𝑔 → dom 𝑐 = dom 𝑔)
19 fveq1 6880 . . . . . . . . . . . 12 (𝑐 = 𝑔 → (𝑐𝑘) = (𝑔𝑘))
2019oveq1d 7411 . . . . . . . . . . 11 (𝑐 = 𝑔 → ((𝑐𝑘) / ((𝑛𝑘) + 1)) = ((𝑔𝑘) / ((𝑛𝑘) + 1)))
2120oveq2d 7412 . . . . . . . . . 10 (𝑐 = 𝑔 → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2221adantr 482 . . . . . . . . 9 ((𝑐 = 𝑔𝑘 ∈ dom 𝑐) → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2318, 22sumeq12dv 15639 . . . . . . . 8 (𝑐 = 𝑔 → Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2417, 23eqtrid 2785 . . . . . . 7 (𝑐 = 𝑔 → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2524oveq2d 7412 . . . . . 6 (𝑐 = 𝑔 → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2625csbeq2dv 3898 . . . . 5 (𝑐 = 𝑔(♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2710, 26eqtr3id 2787 . . . 4 (𝑐 = 𝑔 → ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))) = (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2818fveq2d 6885 . . . . 5 (𝑐 = 𝑔 → (♯‘dom 𝑐) = (♯‘dom 𝑔))
2928csbeq1d 3895 . . . 4 (𝑐 = 𝑔(♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3027, 29eqtrd 2773 . . 3 (𝑐 = 𝑔 → ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3130cbvmptv 5257 . 2 (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))) = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32 eqid 2733 . 2 wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))))) = wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))))
3331, 32bpolylem 15979 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  csb 3891  cmpt 5227  dom cdm 5672  cfv 6535  (class class class)co 7396  wrecscwrecs 8283  cc 11095  0cc0 11097  1c1 11098   + caddc 11100   · cmul 11102   < clt 11235  cmin 11431   / cdiv 11858  0cn0 12459  ...cfz 13471  cexp 14014  Ccbc 14249  chash 14277  Σcsu 15619   BernPoly cbp 15977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-seq 13954  df-hash 14278  df-sum 15620  df-bpoly 15978
This theorem is referenced by:  bpoly0  15981  bpoly1  15982  bpolycl  15983  bpolysum  15984  bpolydiflem  15985  bpoly2  15988  bpoly3  15989  bpoly4  15990
  Copyright terms: Public domain W3C validator