MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolyval Structured version   Visualization version   GIF version

Theorem bpolyval 16082
Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpolyval ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolyval
Dummy variables 𝑔 𝑚 𝑛 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6920 . . . . . 6 (♯‘dom 𝑐) ∈ V
2 oveq2 7439 . . . . . . 7 (𝑛 = (♯‘dom 𝑐) → (𝑋𝑛) = (𝑋↑(♯‘dom 𝑐)))
3 oveq1 7438 . . . . . . . . 9 (𝑛 = (♯‘dom 𝑐) → (𝑛C𝑚) = ((♯‘dom 𝑐)C𝑚))
4 oveq1 7438 . . . . . . . . . . 11 (𝑛 = (♯‘dom 𝑐) → (𝑛𝑚) = ((♯‘dom 𝑐) − 𝑚))
54oveq1d 7446 . . . . . . . . . 10 (𝑛 = (♯‘dom 𝑐) → ((𝑛𝑚) + 1) = (((♯‘dom 𝑐) − 𝑚) + 1))
65oveq2d 7447 . . . . . . . . 9 (𝑛 = (♯‘dom 𝑐) → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))
73, 6oveq12d 7449 . . . . . . . 8 (𝑛 = (♯‘dom 𝑐) → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = (((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
87sumeq2sdv 15736 . . . . . . 7 (𝑛 = (♯‘dom 𝑐) → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
92, 8oveq12d 7449 . . . . . 6 (𝑛 = (♯‘dom 𝑐) → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))))
101, 9csbie 3944 . . . . 5 (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
11 oveq2 7439 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
12 fveq2 6907 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑐𝑚) = (𝑐𝑘))
13 oveq2 7439 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑛𝑚) = (𝑛𝑘))
1413oveq1d 7446 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑛𝑚) + 1) = ((𝑛𝑘) + 1))
1512, 14oveq12d 7449 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑘) / ((𝑛𝑘) + 1)))
1611, 15oveq12d 7449 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))))
1716cbvsumv 15729 . . . . . . . 8 Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1)))
18 dmeq 5917 . . . . . . . . 9 (𝑐 = 𝑔 → dom 𝑐 = dom 𝑔)
19 fveq1 6906 . . . . . . . . . . . 12 (𝑐 = 𝑔 → (𝑐𝑘) = (𝑔𝑘))
2019oveq1d 7446 . . . . . . . . . . 11 (𝑐 = 𝑔 → ((𝑐𝑘) / ((𝑛𝑘) + 1)) = ((𝑔𝑘) / ((𝑛𝑘) + 1)))
2120oveq2d 7447 . . . . . . . . . 10 (𝑐 = 𝑔 → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2221adantr 480 . . . . . . . . 9 ((𝑐 = 𝑔𝑘 ∈ dom 𝑐) → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2318, 22sumeq12dv 15739 . . . . . . . 8 (𝑐 = 𝑔 → Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2417, 23eqtrid 2787 . . . . . . 7 (𝑐 = 𝑔 → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2524oveq2d 7447 . . . . . 6 (𝑐 = 𝑔 → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2625csbeq2dv 3915 . . . . 5 (𝑐 = 𝑔(♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2710, 26eqtr3id 2789 . . . 4 (𝑐 = 𝑔 → ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))) = (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2818fveq2d 6911 . . . . 5 (𝑐 = 𝑔 → (♯‘dom 𝑐) = (♯‘dom 𝑔))
2928csbeq1d 3912 . . . 4 (𝑐 = 𝑔(♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3027, 29eqtrd 2775 . . 3 (𝑐 = 𝑔 → ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3130cbvmptv 5261 . 2 (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))) = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32 eqid 2735 . 2 wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))))) = wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))))
3331, 32bpolylem 16081 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  csb 3908  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431  wrecscwrecs 8335  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490   / cdiv 11918  0cn0 12524  ...cfz 13544  cexp 14099  Ccbc 14338  chash 14366  Σcsu 15719   BernPoly cbp 16079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-hash 14367  df-sum 15720  df-bpoly 16080
This theorem is referenced by:  bpoly0  16083  bpoly1  16084  bpolycl  16085  bpolysum  16086  bpolydiflem  16087  bpoly2  16090  bpoly3  16091  bpoly4  16092
  Copyright terms: Public domain W3C validator