![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumshftm | Structured version Visualization version GIF version |
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumrev.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
fsumrev.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fsumrev.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumrev.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumshftm.5 | ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsumshftm | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑚𝐴 | |
2 | nfcsb1v 3909 | . . 3 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 | |
3 | csbeq1a 3898 | . . 3 ⊢ (𝑗 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑗⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 15675 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 |
5 | fsumrev.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
6 | 5 | znegcld 12698 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
7 | fsumrev.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | fsumrev.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
9 | fsumrev.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
10 | 9 | ralrimiva 3136 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
11 | 2 | nfel1 2909 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ |
12 | 3 | eleq1d 2810 | . . . . . 6 ⊢ (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
13 | 11, 12 | rspc 3589 | . . . . 5 ⊢ (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
14 | 10, 13 | mpan9 505 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑁)) → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ) |
15 | csbeq1 3887 | . . . 4 ⊢ (𝑚 = (𝑘 − -𝐾) → ⦋𝑚 / 𝑗⦌𝐴 = ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) | |
16 | 6, 7, 8, 14, 15 | fsumshft 15758 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
17 | 7 | zcnd 12697 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 5 | zcnd 12697 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
19 | 17, 18 | negsubd 11607 | . . . . 5 ⊢ (𝜑 → (𝑀 + -𝐾) = (𝑀 − 𝐾)) |
20 | 8 | zcnd 12697 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
21 | 20, 18 | negsubd 11607 | . . . . 5 ⊢ (𝜑 → (𝑁 + -𝐾) = (𝑁 − 𝐾)) |
22 | 19, 21 | oveq12d 7434 | . . . 4 ⊢ (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
23 | 22 | sumeq1d 15679 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
24 | elfzelz 13533 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℤ) | |
25 | 24 | zcnd 12697 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℂ) |
26 | subneg 11539 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) | |
27 | 25, 18, 26 | syl2anr 595 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) |
28 | 27 | csbeq1d 3888 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴) |
29 | ovex 7449 | . . . . . 6 ⊢ (𝑘 + 𝐾) ∈ V | |
30 | fsumshftm.5 | . . . . . 6 ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) | |
31 | 29, 30 | csbie 3920 | . . . . 5 ⊢ ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴 = 𝐵 |
32 | 28, 31 | eqtrdi 2781 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = 𝐵) |
33 | 32 | sumeq2dv 15681 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
34 | 16, 23, 33 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
35 | 4, 34 | eqtrid 2777 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ⦋csb 3884 (class class class)co 7416 ℂcc 11136 + caddc 11141 − cmin 11474 -cneg 11475 ℤcz 12588 ...cfz 13516 Σcsu 15664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 |
This theorem is referenced by: telfsumo 15780 fsumparts 15784 arisum 15838 pwdif 15846 geo2sum 15851 ovolicc2lem4 25467 uniioombllem3 25532 dvply1 26236 pserdvlem2 26383 advlogexp 26607 dchrisumlem1 27440 pntpbnd2 27538 sumcubes 41938 nn0sumshdiglemA 47804 nn0sumshdiglemB 47805 |
Copyright terms: Public domain | W3C validator |