| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumshftm | Structured version Visualization version GIF version | ||
| Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumrev.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| fsumrev.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| fsumrev.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fsumrev.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fsumshftm.5 | ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fsumshftm | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3876 | . . 3 ⊢ (𝑗 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑗⦌𝐴) | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑚𝐴 | |
| 3 | nfcsb1v 3886 | . . 3 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 | |
| 4 | 1, 2, 3 | cbvsum 15661 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 |
| 5 | fsumrev.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 6 | 5 | znegcld 12640 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
| 7 | fsumrev.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | fsumrev.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 9 | fsumrev.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 10 | 9 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 11 | 3 | nfel1 2908 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ |
| 12 | 1 | eleq1d 2813 | . . . . . 6 ⊢ (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
| 13 | 11, 12 | rspc 3576 | . . . . 5 ⊢ (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
| 14 | 10, 13 | mpan9 506 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑁)) → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ) |
| 15 | csbeq1 3865 | . . . 4 ⊢ (𝑚 = (𝑘 − -𝐾) → ⦋𝑚 / 𝑗⦌𝐴 = ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) | |
| 16 | 6, 7, 8, 14, 15 | fsumshft 15746 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
| 17 | 7 | zcnd 12639 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 18 | 5 | zcnd 12639 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 19 | 17, 18 | negsubd 11539 | . . . . 5 ⊢ (𝜑 → (𝑀 + -𝐾) = (𝑀 − 𝐾)) |
| 20 | 8 | zcnd 12639 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 21 | 20, 18 | negsubd 11539 | . . . . 5 ⊢ (𝜑 → (𝑁 + -𝐾) = (𝑁 − 𝐾)) |
| 22 | 19, 21 | oveq12d 7405 | . . . 4 ⊢ (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 23 | 22 | sumeq1d 15666 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
| 24 | elfzelz 13485 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℤ) | |
| 25 | 24 | zcnd 12639 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℂ) |
| 26 | subneg 11471 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) | |
| 27 | 25, 18, 26 | syl2anr 597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) |
| 28 | 27 | csbeq1d 3866 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴) |
| 29 | ovex 7420 | . . . . . 6 ⊢ (𝑘 + 𝐾) ∈ V | |
| 30 | fsumshftm.5 | . . . . . 6 ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) | |
| 31 | 29, 30 | csbie 3897 | . . . . 5 ⊢ ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴 = 𝐵 |
| 32 | 28, 31 | eqtrdi 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = 𝐵) |
| 33 | 32 | sumeq2dv 15668 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| 34 | 16, 23, 33 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| 35 | 4, 34 | eqtrid 2776 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⦋csb 3862 (class class class)co 7387 ℂcc 11066 + caddc 11071 − cmin 11405 -cneg 11406 ℤcz 12529 ...cfz 13468 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 |
| This theorem is referenced by: telfsumo 15768 fsumparts 15772 arisum 15826 pwdif 15834 geo2sum 15839 ovolicc2lem4 25421 uniioombllem3 25486 dvply1 26191 pserdvlem2 26338 advlogexp 26564 dchrisumlem1 27400 pntpbnd2 27498 sumcubes 42301 nn0sumshdiglemA 48608 nn0sumshdiglemB 48609 |
| Copyright terms: Public domain | W3C validator |