MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Structured version   Visualization version   GIF version

Theorem fsumdvdsmul 25699
Description: Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1 (𝜑𝑀 ∈ ℕ)
dvdsmulf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsmulf1o.3 (𝜑 → (𝑀 gcd 𝑁) = 1)
dvdsmulf1o.x 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
dvdsmulf1o.y 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsmulf1o.z 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
fsumdvdsmul.4 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
fsumdvdsmul.5 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
fsumdvdsmul.6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
fsumdvdsmul.7 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
fsumdvdsmul (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐷,𝑖   𝑥,𝑀   𝑥,𝑁   𝑖,𝑗,𝑘,𝑋   𝐵,𝑗   𝐶,𝑗,𝑘   𝑖,𝑌,𝑗,𝑘   𝑖,𝑍,𝑗   𝑥,𝑖,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑘)   𝐶(𝑥,𝑖)   𝐷(𝑥,𝑗,𝑘)   𝑀(𝑖,𝑗,𝑘)   𝑁(𝑖,𝑗,𝑘)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑘)

Proof of Theorem fsumdvdsmul
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13329 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
2 dvdsmulf1o.x . . . . 5 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
3 dvdsmulf1o.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
4 dvdsssfz1 15656 . . . . . 6 (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
53, 4syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
62, 5eqsstrid 4012 . . . 4 (𝜑𝑋 ⊆ (1...𝑀))
71, 6ssfid 8729 . . 3 (𝜑𝑋 ∈ Fin)
8 fzfid 13329 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
9 dvdsmulf1o.y . . . . . 6 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
10 dvdsmulf1o.2 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
11 dvdsssfz1 15656 . . . . . . 7 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1210, 11syl 17 . . . . . 6 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
139, 12eqsstrid 4012 . . . . 5 (𝜑𝑌 ⊆ (1...𝑁))
148, 13ssfid 8729 . . . 4 (𝜑𝑌 ∈ Fin)
15 fsumdvdsmul.5 . . . 4 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
1614, 15fsumcl 15078 . . 3 (𝜑 → Σ𝑘𝑌 𝐵 ∈ ℂ)
17 fsumdvdsmul.4 . . 3 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
187, 16, 17fsummulc1 15128 . 2 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵))
1914adantr 481 . . . . 5 ((𝜑𝑗𝑋) → 𝑌 ∈ Fin)
2015adantlr 711 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → 𝐵 ∈ ℂ)
2119, 17, 20fsummulc2 15127 . . . 4 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 (𝐴 · 𝐵))
22 fsumdvdsmul.6 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
2322anassrs 468 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → (𝐴 · 𝐵) = 𝐷)
2423sumeq2dv 15048 . . . 4 ((𝜑𝑗𝑋) → Σ𝑘𝑌 (𝐴 · 𝐵) = Σ𝑘𝑌 𝐷)
2521, 24eqtrd 2853 . . 3 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 𝐷)
2625sumeq2dv 15048 . 2 (𝜑 → Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 Σ𝑘𝑌 𝐷)
27 fveq2 6663 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = ( · ‘⟨𝑗, 𝑘⟩))
28 df-ov 7148 . . . . . . 7 (𝑗 · 𝑘) = ( · ‘⟨𝑗, 𝑘⟩)
2927, 28syl6eqr 2871 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = (𝑗 · 𝑘))
3029csbeq1d 3884 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = (𝑗 · 𝑘) / 𝑖𝐶)
31 ovex 7178 . . . . . 6 (𝑗 · 𝑘) ∈ V
32 fsumdvdsmul.7 . . . . . 6 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
3331, 32csbie 3915 . . . . 5 (𝑗 · 𝑘) / 𝑖𝐶 = 𝐷
3430, 33syl6eq 2869 . . . 4 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = 𝐷)
3517adantrr 713 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐴 ∈ ℂ)
3615adantrl 712 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐵 ∈ ℂ)
3735, 36mulcld 10649 . . . . 5 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) ∈ ℂ)
3822, 37eqeltrrd 2911 . . . 4 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐷 ∈ ℂ)
3934, 7, 14, 38fsumxp 15115 . . 3 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
40 nfcv 2974 . . . . 5 𝑤𝐶
41 nfcsb1v 3904 . . . . 5 𝑖𝑤 / 𝑖𝐶
42 csbeq1a 3894 . . . . 5 (𝑖 = 𝑤𝐶 = 𝑤 / 𝑖𝐶)
4340, 41, 42cbvsumi 15042 . . . 4 Σ𝑖𝑍 𝐶 = Σ𝑤𝑍 𝑤 / 𝑖𝐶
44 csbeq1 3883 . . . . 5 (𝑤 = ( · ‘𝑧) → 𝑤 / 𝑖𝐶 = ( · ‘𝑧) / 𝑖𝐶)
45 xpfi 8777 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin)
467, 14, 45syl2anc 584 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ Fin)
47 dvdsmulf1o.3 . . . . . 6 (𝜑 → (𝑀 gcd 𝑁) = 1)
48 dvdsmulf1o.z . . . . . 6 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
493, 10, 47, 2, 9, 48dvdsmulf1o 25698 . . . . 5 (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
50 fvres 6682 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5150adantl 482 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5238ralrimivva 3188 . . . . . . . 8 (𝜑 → ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5334eleq1d 2894 . . . . . . . . 9 (𝑧 = ⟨𝑗, 𝑘⟩ → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
5453ralxp 5705 . . . . . . . 8 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5552, 54sylibr 235 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
56 ax-mulf 10605 . . . . . . . . . 10 · :(ℂ × ℂ)⟶ℂ
57 ffn 6507 . . . . . . . . . 10 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
5856, 57ax-mp 5 . . . . . . . . 9 · Fn (ℂ × ℂ)
592ssrab3 4054 . . . . . . . . . . 11 𝑋 ⊆ ℕ
60 nnsscn 11631 . . . . . . . . . . 11 ℕ ⊆ ℂ
6159, 60sstri 3973 . . . . . . . . . 10 𝑋 ⊆ ℂ
629ssrab3 4054 . . . . . . . . . . 11 𝑌 ⊆ ℕ
6362, 60sstri 3973 . . . . . . . . . 10 𝑌 ⊆ ℂ
64 xpss12 5563 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
6561, 63, 64mp2an 688 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ (ℂ × ℂ)
6644eleq1d 2894 . . . . . . . . . 10 (𝑤 = ( · ‘𝑧) → (𝑤 / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
6766ralima 6991 . . . . . . . . 9 (( · Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
6858, 65, 67mp2an 688 . . . . . . . 8 (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
69 df-ima 5561 . . . . . . . . . 10 ( · “ (𝑋 × 𝑌)) = ran ( · ↾ (𝑋 × 𝑌))
70 f1ofo 6615 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍)
71 forn 6586 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7249, 70, 713syl 18 . . . . . . . . . 10 (𝜑 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7369, 72syl5eq 2865 . . . . . . . . 9 (𝜑 → ( · “ (𝑋 × 𝑌)) = 𝑍)
7473raleqdv 3413 . . . . . . . 8 (𝜑 → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
7568, 74syl5bbr 286 . . . . . . 7 (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
7655, 75mpbid 233 . . . . . 6 (𝜑 → ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ)
7776r19.21bi 3205 . . . . 5 ((𝜑𝑤𝑍) → 𝑤 / 𝑖𝐶 ∈ ℂ)
7844, 46, 49, 51, 77fsumf1o 15068 . . . 4 (𝜑 → Σ𝑤𝑍 𝑤 / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
7943, 78syl5eq 2865 . . 3 (𝜑 → Σ𝑖𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
8039, 79eqtr4d 2856 . 2 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑖𝑍 𝐶)
8118, 26, 803eqtrd 2857 1 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  {crab 3139  csb 3880  wss 3933  cop 4563   class class class wbr 5057   × cxp 5546  ran crn 5549  cres 5550  cima 5551   Fn wfn 6343  wf 6344  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  Fincfn 8497  cc 10523  1c1 10526   · cmul 10530  cn 11626  ...cfz 12880  Σcsu 15030  cdvds 15595   gcd cgcd 15831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-dvds 15596  df-gcd 15832
This theorem is referenced by:  sgmmul  25704  dchrisum0fmul  26009
  Copyright terms: Public domain W3C validator