MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Structured version   Visualization version   GIF version

Theorem fsumdvdsmul 26935
Description: Product of two divisor sums. (This is also the main part of the proof that "Ξ£π‘˜ βˆ₯ 𝑁𝐹(π‘˜) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1 (πœ‘ β†’ 𝑀 ∈ β„•)
dvdsmulf1o.2 (πœ‘ β†’ 𝑁 ∈ β„•)
dvdsmulf1o.3 (πœ‘ β†’ (𝑀 gcd 𝑁) = 1)
dvdsmulf1o.x 𝑋 = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑀}
dvdsmulf1o.y π‘Œ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}
dvdsmulf1o.z 𝑍 = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑀 Β· 𝑁)}
fsumdvdsmul.4 ((πœ‘ ∧ 𝑗 ∈ 𝑋) β†’ 𝐴 ∈ β„‚)
fsumdvdsmul.5 ((πœ‘ ∧ π‘˜ ∈ π‘Œ) β†’ 𝐡 ∈ β„‚)
fsumdvdsmul.6 ((πœ‘ ∧ (𝑗 ∈ 𝑋 ∧ π‘˜ ∈ π‘Œ)) β†’ (𝐴 Β· 𝐡) = 𝐷)
fsumdvdsmul.7 (𝑖 = (𝑗 Β· π‘˜) β†’ 𝐢 = 𝐷)
Assertion
Ref Expression
fsumdvdsmul (πœ‘ β†’ (Σ𝑗 ∈ 𝑋 𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡) = Σ𝑖 ∈ 𝑍 𝐢)
Distinct variable groups:   𝐴,π‘˜   𝐷,𝑖   π‘₯,𝑀   π‘₯,𝑁   𝑖,𝑗,π‘˜,𝑋   𝐡,𝑗   𝐢,𝑗,π‘˜   𝑖,π‘Œ,𝑗,π‘˜   𝑖,𝑍,𝑗   π‘₯,𝑖,𝑗,π‘˜   πœ‘,𝑖,𝑗,π‘˜
Allowed substitution hints:   πœ‘(π‘₯)   𝐴(π‘₯,𝑖,𝑗)   𝐡(π‘₯,𝑖,π‘˜)   𝐢(π‘₯,𝑖)   𝐷(π‘₯,𝑗,π‘˜)   𝑀(𝑖,𝑗,π‘˜)   𝑁(𝑖,𝑗,π‘˜)   𝑋(π‘₯)   π‘Œ(π‘₯)   𝑍(π‘₯,π‘˜)

Proof of Theorem fsumdvdsmul
Dummy variables 𝑧 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13942 . . . 4 (πœ‘ β†’ (1...𝑀) ∈ Fin)
2 dvdsmulf1o.x . . . . 5 𝑋 = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑀}
3 dvdsmulf1o.1 . . . . . 6 (πœ‘ β†’ 𝑀 ∈ β„•)
4 dvdsssfz1 16265 . . . . . 6 (𝑀 ∈ β„• β†’ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑀} βŠ† (1...𝑀))
53, 4syl 17 . . . . 5 (πœ‘ β†’ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑀} βŠ† (1...𝑀))
62, 5eqsstrid 4029 . . . 4 (πœ‘ β†’ 𝑋 βŠ† (1...𝑀))
71, 6ssfid 9269 . . 3 (πœ‘ β†’ 𝑋 ∈ Fin)
8 fzfid 13942 . . . . 5 (πœ‘ β†’ (1...𝑁) ∈ Fin)
9 dvdsmulf1o.y . . . . . 6 π‘Œ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}
10 dvdsmulf1o.2 . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ β„•)
11 dvdsssfz1 16265 . . . . . . 7 (𝑁 ∈ β„• β†’ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁} βŠ† (1...𝑁))
1210, 11syl 17 . . . . . 6 (πœ‘ β†’ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁} βŠ† (1...𝑁))
139, 12eqsstrid 4029 . . . . 5 (πœ‘ β†’ π‘Œ βŠ† (1...𝑁))
148, 13ssfid 9269 . . . 4 (πœ‘ β†’ π‘Œ ∈ Fin)
15 fsumdvdsmul.5 . . . 4 ((πœ‘ ∧ π‘˜ ∈ π‘Œ) β†’ 𝐡 ∈ β„‚)
1614, 15fsumcl 15683 . . 3 (πœ‘ β†’ Ξ£π‘˜ ∈ π‘Œ 𝐡 ∈ β„‚)
17 fsumdvdsmul.4 . . 3 ((πœ‘ ∧ 𝑗 ∈ 𝑋) β†’ 𝐴 ∈ β„‚)
187, 16, 17fsummulc1 15735 . 2 (πœ‘ β†’ (Σ𝑗 ∈ 𝑋 𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡) = Σ𝑗 ∈ 𝑋 (𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡))
1914adantr 479 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ 𝑋) β†’ π‘Œ ∈ Fin)
2015adantlr 711 . . . . 5 (((πœ‘ ∧ 𝑗 ∈ 𝑋) ∧ π‘˜ ∈ π‘Œ) β†’ 𝐡 ∈ β„‚)
2119, 17, 20fsummulc2 15734 . . . 4 ((πœ‘ ∧ 𝑗 ∈ 𝑋) β†’ (𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡) = Ξ£π‘˜ ∈ π‘Œ (𝐴 Β· 𝐡))
22 fsumdvdsmul.6 . . . . . 6 ((πœ‘ ∧ (𝑗 ∈ 𝑋 ∧ π‘˜ ∈ π‘Œ)) β†’ (𝐴 Β· 𝐡) = 𝐷)
2322anassrs 466 . . . . 5 (((πœ‘ ∧ 𝑗 ∈ 𝑋) ∧ π‘˜ ∈ π‘Œ) β†’ (𝐴 Β· 𝐡) = 𝐷)
2423sumeq2dv 15653 . . . 4 ((πœ‘ ∧ 𝑗 ∈ 𝑋) β†’ Ξ£π‘˜ ∈ π‘Œ (𝐴 Β· 𝐡) = Ξ£π‘˜ ∈ π‘Œ 𝐷)
2521, 24eqtrd 2770 . . 3 ((πœ‘ ∧ 𝑗 ∈ 𝑋) β†’ (𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡) = Ξ£π‘˜ ∈ π‘Œ 𝐷)
2625sumeq2dv 15653 . 2 (πœ‘ β†’ Σ𝑗 ∈ 𝑋 (𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡) = Σ𝑗 ∈ 𝑋 Ξ£π‘˜ ∈ π‘Œ 𝐷)
27 fveq2 6890 . . . . . . 7 (𝑧 = βŸ¨π‘—, π‘˜βŸ© β†’ ( Β· β€˜π‘§) = ( Β· β€˜βŸ¨π‘—, π‘˜βŸ©))
28 df-ov 7414 . . . . . . 7 (𝑗 Β· π‘˜) = ( Β· β€˜βŸ¨π‘—, π‘˜βŸ©)
2927, 28eqtr4di 2788 . . . . . 6 (𝑧 = βŸ¨π‘—, π‘˜βŸ© β†’ ( Β· β€˜π‘§) = (𝑗 Β· π‘˜))
3029csbeq1d 3896 . . . . 5 (𝑧 = βŸ¨π‘—, π‘˜βŸ© β†’ ⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ = ⦋(𝑗 Β· π‘˜) / π‘–β¦ŒπΆ)
31 ovex 7444 . . . . . 6 (𝑗 Β· π‘˜) ∈ V
32 fsumdvdsmul.7 . . . . . 6 (𝑖 = (𝑗 Β· π‘˜) β†’ 𝐢 = 𝐷)
3331, 32csbie 3928 . . . . 5 ⦋(𝑗 Β· π‘˜) / π‘–β¦ŒπΆ = 𝐷
3430, 33eqtrdi 2786 . . . 4 (𝑧 = βŸ¨π‘—, π‘˜βŸ© β†’ ⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ = 𝐷)
3517adantrr 713 . . . . . 6 ((πœ‘ ∧ (𝑗 ∈ 𝑋 ∧ π‘˜ ∈ π‘Œ)) β†’ 𝐴 ∈ β„‚)
3615adantrl 712 . . . . . 6 ((πœ‘ ∧ (𝑗 ∈ 𝑋 ∧ π‘˜ ∈ π‘Œ)) β†’ 𝐡 ∈ β„‚)
3735, 36mulcld 11238 . . . . 5 ((πœ‘ ∧ (𝑗 ∈ 𝑋 ∧ π‘˜ ∈ π‘Œ)) β†’ (𝐴 Β· 𝐡) ∈ β„‚)
3822, 37eqeltrrd 2832 . . . 4 ((πœ‘ ∧ (𝑗 ∈ 𝑋 ∧ π‘˜ ∈ π‘Œ)) β†’ 𝐷 ∈ β„‚)
3934, 7, 14, 38fsumxp 15722 . . 3 (πœ‘ β†’ Σ𝑗 ∈ 𝑋 Ξ£π‘˜ ∈ π‘Œ 𝐷 = Σ𝑧 ∈ (𝑋 Γ— π‘Œ)⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ)
40 nfcv 2901 . . . . 5 Ⅎ𝑀𝐢
41 nfcsb1v 3917 . . . . 5 Ⅎ𝑖⦋𝑀 / π‘–β¦ŒπΆ
42 csbeq1a 3906 . . . . 5 (𝑖 = 𝑀 β†’ 𝐢 = ⦋𝑀 / π‘–β¦ŒπΆ)
4340, 41, 42cbvsumi 15647 . . . 4 Σ𝑖 ∈ 𝑍 𝐢 = Σ𝑀 ∈ 𝑍 ⦋𝑀 / π‘–β¦ŒπΆ
44 csbeq1 3895 . . . . 5 (𝑀 = ( Β· β€˜π‘§) β†’ ⦋𝑀 / π‘–β¦ŒπΆ = ⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ)
45 xpfi 9319 . . . . . 6 ((𝑋 ∈ Fin ∧ π‘Œ ∈ Fin) β†’ (𝑋 Γ— π‘Œ) ∈ Fin)
467, 14, 45syl2anc 582 . . . . 5 (πœ‘ β†’ (𝑋 Γ— π‘Œ) ∈ Fin)
47 dvdsmulf1o.3 . . . . . 6 (πœ‘ β†’ (𝑀 gcd 𝑁) = 1)
48 dvdsmulf1o.z . . . . . 6 𝑍 = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑀 Β· 𝑁)}
493, 10, 47, 2, 9, 48dvdsmulf1o 26934 . . . . 5 (πœ‘ β†’ ( Β· β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)–1-1-onto→𝑍)
50 fvres 6909 . . . . . 6 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ (( Β· β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) = ( Β· β€˜π‘§))
5150adantl 480 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (( Β· β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) = ( Β· β€˜π‘§))
5238ralrimivva 3198 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘— ∈ 𝑋 βˆ€π‘˜ ∈ π‘Œ 𝐷 ∈ β„‚)
5334eleq1d 2816 . . . . . . . . 9 (𝑧 = βŸ¨π‘—, π‘˜βŸ© β†’ (⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ ∈ β„‚ ↔ 𝐷 ∈ β„‚))
5453ralxp 5840 . . . . . . . 8 (βˆ€π‘§ ∈ (𝑋 Γ— π‘Œ)⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ ∈ β„‚ ↔ βˆ€π‘— ∈ 𝑋 βˆ€π‘˜ ∈ π‘Œ 𝐷 ∈ β„‚)
5552, 54sylibr 233 . . . . . . 7 (πœ‘ β†’ βˆ€π‘§ ∈ (𝑋 Γ— π‘Œ)⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ ∈ β„‚)
56 ax-mulf 11192 . . . . . . . . . 10 Β· :(β„‚ Γ— β„‚)βŸΆβ„‚
57 ffn 6716 . . . . . . . . . 10 ( Β· :(β„‚ Γ— β„‚)βŸΆβ„‚ β†’ Β· Fn (β„‚ Γ— β„‚))
5856, 57ax-mp 5 . . . . . . . . 9 Β· Fn (β„‚ Γ— β„‚)
592ssrab3 4079 . . . . . . . . . . 11 𝑋 βŠ† β„•
60 nnsscn 12221 . . . . . . . . . . 11 β„• βŠ† β„‚
6159, 60sstri 3990 . . . . . . . . . 10 𝑋 βŠ† β„‚
629ssrab3 4079 . . . . . . . . . . 11 π‘Œ βŠ† β„•
6362, 60sstri 3990 . . . . . . . . . 10 π‘Œ βŠ† β„‚
64 xpss12 5690 . . . . . . . . . 10 ((𝑋 βŠ† β„‚ ∧ π‘Œ βŠ† β„‚) β†’ (𝑋 Γ— π‘Œ) βŠ† (β„‚ Γ— β„‚))
6561, 63, 64mp2an 688 . . . . . . . . 9 (𝑋 Γ— π‘Œ) βŠ† (β„‚ Γ— β„‚)
6644eleq1d 2816 . . . . . . . . . 10 (𝑀 = ( Β· β€˜π‘§) β†’ (⦋𝑀 / π‘–β¦ŒπΆ ∈ β„‚ ↔ ⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ ∈ β„‚))
6766ralima 7241 . . . . . . . . 9 (( Β· Fn (β„‚ Γ— β„‚) ∧ (𝑋 Γ— π‘Œ) βŠ† (β„‚ Γ— β„‚)) β†’ (βˆ€π‘€ ∈ ( Β· β€œ (𝑋 Γ— π‘Œ))⦋𝑀 / π‘–β¦ŒπΆ ∈ β„‚ ↔ βˆ€π‘§ ∈ (𝑋 Γ— π‘Œ)⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ ∈ β„‚))
6858, 65, 67mp2an 688 . . . . . . . 8 (βˆ€π‘€ ∈ ( Β· β€œ (𝑋 Γ— π‘Œ))⦋𝑀 / π‘–β¦ŒπΆ ∈ β„‚ ↔ βˆ€π‘§ ∈ (𝑋 Γ— π‘Œ)⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ ∈ β„‚)
69 df-ima 5688 . . . . . . . . . 10 ( Β· β€œ (𝑋 Γ— π‘Œ)) = ran ( Β· β†Ύ (𝑋 Γ— π‘Œ))
70 f1ofo 6839 . . . . . . . . . . 11 (( Β· β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)–1-1-onto→𝑍 β†’ ( Β· β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)–onto→𝑍)
71 forn 6807 . . . . . . . . . . 11 (( Β· β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)–onto→𝑍 β†’ ran ( Β· β†Ύ (𝑋 Γ— π‘Œ)) = 𝑍)
7249, 70, 713syl 18 . . . . . . . . . 10 (πœ‘ β†’ ran ( Β· β†Ύ (𝑋 Γ— π‘Œ)) = 𝑍)
7369, 72eqtrid 2782 . . . . . . . . 9 (πœ‘ β†’ ( Β· β€œ (𝑋 Γ— π‘Œ)) = 𝑍)
7473raleqdv 3323 . . . . . . . 8 (πœ‘ β†’ (βˆ€π‘€ ∈ ( Β· β€œ (𝑋 Γ— π‘Œ))⦋𝑀 / π‘–β¦ŒπΆ ∈ β„‚ ↔ βˆ€π‘€ ∈ 𝑍 ⦋𝑀 / π‘–β¦ŒπΆ ∈ β„‚))
7568, 74bitr3id 284 . . . . . . 7 (πœ‘ β†’ (βˆ€π‘§ ∈ (𝑋 Γ— π‘Œ)⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ ∈ β„‚ ↔ βˆ€π‘€ ∈ 𝑍 ⦋𝑀 / π‘–β¦ŒπΆ ∈ β„‚))
7655, 75mpbid 231 . . . . . 6 (πœ‘ β†’ βˆ€π‘€ ∈ 𝑍 ⦋𝑀 / π‘–β¦ŒπΆ ∈ β„‚)
7776r19.21bi 3246 . . . . 5 ((πœ‘ ∧ 𝑀 ∈ 𝑍) β†’ ⦋𝑀 / π‘–β¦ŒπΆ ∈ β„‚)
7844, 46, 49, 51, 77fsumf1o 15673 . . . 4 (πœ‘ β†’ Σ𝑀 ∈ 𝑍 ⦋𝑀 / π‘–β¦ŒπΆ = Σ𝑧 ∈ (𝑋 Γ— π‘Œ)⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ)
7943, 78eqtrid 2782 . . 3 (πœ‘ β†’ Σ𝑖 ∈ 𝑍 𝐢 = Σ𝑧 ∈ (𝑋 Γ— π‘Œ)⦋( Β· β€˜π‘§) / π‘–β¦ŒπΆ)
8039, 79eqtr4d 2773 . 2 (πœ‘ β†’ Σ𝑗 ∈ 𝑋 Ξ£π‘˜ ∈ π‘Œ 𝐷 = Σ𝑖 ∈ 𝑍 𝐢)
8118, 26, 803eqtrd 2774 1 (πœ‘ β†’ (Σ𝑗 ∈ 𝑋 𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡) = Σ𝑖 ∈ 𝑍 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430  β¦‹csb 3892   βŠ† wss 3947  βŸ¨cop 4633   class class class wbr 5147   Γ— cxp 5673  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   Fn wfn 6537  βŸΆwf 6538  β€“ontoβ†’wfo 6540  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7411  Fincfn 8941  β„‚cc 11110  1c1 11113   Β· cmul 11117  β„•cn 12216  ...cfz 13488  Ξ£csu 15636   βˆ₯ cdvds 16201   gcd cgcd 16439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-sum 15637  df-dvds 16202  df-gcd 16440
This theorem is referenced by:  sgmmul  26940  dchrisum0fmul  27245
  Copyright terms: Public domain W3C validator