MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Structured version   Visualization version   GIF version

Theorem fsumdvdsmul 27256
Description: Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.) Avoid ax-mulf 11264. (Revised by GG, 18-Apr-2025.)
Hypotheses
Ref Expression
mpodvdsmulf1o.1 (𝜑𝑀 ∈ ℕ)
mpodvdsmulf1o.2 (𝜑𝑁 ∈ ℕ)
mpodvdsmulf1o.3 (𝜑 → (𝑀 gcd 𝑁) = 1)
mpodvdsmulf1o.x 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
mpodvdsmulf1o.y 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
mpodvdsmulf1o.z 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
fsumdvdsmul.4 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
fsumdvdsmul.5 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
fsumdvdsmul.6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
fsumdvdsmul.7 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
fsumdvdsmul (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Distinct variable groups:   𝑥,𝑖,𝑗,𝑘   𝑥,𝑀   𝑥,𝑁   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗   𝑖,𝑍,𝑗   𝜑,𝑖,𝑗   𝑘,𝑋   𝑘,𝑌   𝐴,𝑘   𝐵,𝑗   𝐶,𝑗,𝑘   𝐷,𝑖   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑘)   𝐶(𝑥,𝑖)   𝐷(𝑥,𝑗,𝑘)   𝑀(𝑖,𝑗,𝑘)   𝑁(𝑖,𝑗,𝑘)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑘)

Proof of Theorem fsumdvdsmul
Dummy variables 𝑦 𝑧 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
2 mpodvdsmulf1o.x . . . . 5 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
3 mpodvdsmulf1o.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
4 dvdsssfz1 16366 . . . . . 6 (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
53, 4syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
62, 5eqsstrid 4057 . . . 4 (𝜑𝑋 ⊆ (1...𝑀))
71, 6ssfid 9329 . . 3 (𝜑𝑋 ∈ Fin)
8 fzfid 14024 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
9 mpodvdsmulf1o.y . . . . . 6 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
10 mpodvdsmulf1o.2 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
11 dvdsssfz1 16366 . . . . . . 7 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1210, 11syl 17 . . . . . 6 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
139, 12eqsstrid 4057 . . . . 5 (𝜑𝑌 ⊆ (1...𝑁))
148, 13ssfid 9329 . . . 4 (𝜑𝑌 ∈ Fin)
15 fsumdvdsmul.5 . . . 4 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
1614, 15fsumcl 15781 . . 3 (𝜑 → Σ𝑘𝑌 𝐵 ∈ ℂ)
17 fsumdvdsmul.4 . . 3 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
187, 16, 17fsummulc1 15833 . 2 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵))
1914adantr 480 . . . . 5 ((𝜑𝑗𝑋) → 𝑌 ∈ Fin)
2015adantlr 714 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → 𝐵 ∈ ℂ)
2119, 17, 20fsummulc2 15832 . . . 4 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 (𝐴 · 𝐵))
22 fsumdvdsmul.6 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
2322anassrs 467 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → (𝐴 · 𝐵) = 𝐷)
2423sumeq2dv 15750 . . . 4 ((𝜑𝑗𝑋) → Σ𝑘𝑌 (𝐴 · 𝐵) = Σ𝑘𝑌 𝐷)
2521, 24eqtrd 2780 . . 3 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 𝐷)
2625sumeq2dv 15750 . 2 (𝜑 → Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 Σ𝑘𝑌 𝐷)
27 elxpi 5722 . . . . . . 7 (𝑧 ∈ (𝑋 × 𝑌) → ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢𝑋𝑣𝑌)))
28 fveq2 6920 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ = 𝑧 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
2928eqcoms 2748 . . . . . . . . . . 11 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
30 fveq2 6920 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ = 𝑧 → ( · ‘⟨𝑢, 𝑣⟩) = ( · ‘𝑧))
3130eqcoms 2748 . . . . . . . . . . 11 (𝑧 = ⟨𝑢, 𝑣⟩ → ( · ‘⟨𝑢, 𝑣⟩) = ( · ‘𝑧))
3229, 31eqeq12d 2756 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ( · ‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧)))
3332biimpd 229 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ( · ‘⟨𝑢, 𝑣⟩) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧)))
342ssrab3 4105 . . . . . . . . . . . 12 𝑋 ⊆ ℕ
35 nnsscn 12298 . . . . . . . . . . . 12 ℕ ⊆ ℂ
3634, 35sstri 4018 . . . . . . . . . . 11 𝑋 ⊆ ℂ
3736sseli 4004 . . . . . . . . . 10 (𝑢𝑋𝑢 ∈ ℂ)
389ssrab3 4105 . . . . . . . . . . . 12 𝑌 ⊆ ℕ
3938, 35sstri 4018 . . . . . . . . . . 11 𝑌 ⊆ ℂ
4039sseli 4004 . . . . . . . . . 10 (𝑣𝑌𝑣 ∈ ℂ)
41 ovmpot 7611 . . . . . . . . . . 11 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣))
42 df-ov 7451 . . . . . . . . . . 11 (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩)
43 df-ov 7451 . . . . . . . . . . 11 (𝑢 · 𝑣) = ( · ‘⟨𝑢, 𝑣⟩)
4441, 42, 433eqtr3g 2803 . . . . . . . . . 10 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ( · ‘⟨𝑢, 𝑣⟩))
4537, 40, 44syl2an 595 . . . . . . . . 9 ((𝑢𝑋𝑣𝑌) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ( · ‘⟨𝑢, 𝑣⟩))
4633, 45impel 505 . . . . . . . 8 ((𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢𝑋𝑣𝑌)) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧))
4746exlimivv 1931 . . . . . . 7 (∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢𝑋𝑣𝑌)) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧))
4827, 47syl 17 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧))
4948eqcomd 2746 . . . . 5 (𝑧 ∈ (𝑋 × 𝑌) → ( · ‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
5049csbeq1d 3925 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) → ( · ‘𝑧) / 𝑖𝐶 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶)
5150sumeq2i 15746 . . 3 Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶
52 fveq2 6920 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = ( · ‘⟨𝑗, 𝑘⟩))
53 df-ov 7451 . . . . . . 7 (𝑗 · 𝑘) = ( · ‘⟨𝑗, 𝑘⟩)
5452, 53eqtr4di 2798 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = (𝑗 · 𝑘))
5554csbeq1d 3925 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = (𝑗 · 𝑘) / 𝑖𝐶)
56 ovex 7481 . . . . . 6 (𝑗 · 𝑘) ∈ V
57 fsumdvdsmul.7 . . . . . 6 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
5856, 57csbie 3957 . . . . 5 (𝑗 · 𝑘) / 𝑖𝐶 = 𝐷
5955, 58eqtrdi 2796 . . . 4 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = 𝐷)
6017adantrr 716 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐴 ∈ ℂ)
6115adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐵 ∈ ℂ)
6260, 61mulcld 11310 . . . . 5 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) ∈ ℂ)
6322, 62eqeltrrd 2845 . . . 4 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐷 ∈ ℂ)
6459, 7, 14, 63fsumxp 15820 . . 3 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
65 csbeq1a 3935 . . . . 5 (𝑖 = 𝑤𝐶 = 𝑤 / 𝑖𝐶)
66 nfcv 2908 . . . . 5 𝑤𝐶
67 nfcsb1v 3946 . . . . 5 𝑖𝑤 / 𝑖𝐶
6865, 66, 67cbvsum 15743 . . . 4 Σ𝑖𝑍 𝐶 = Σ𝑤𝑍 𝑤 / 𝑖𝐶
69 csbeq1 3924 . . . . 5 (𝑤 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) → 𝑤 / 𝑖𝐶 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶)
70 xpfi 9386 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin)
717, 14, 70syl2anc 583 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ Fin)
72 mpodvdsmulf1o.3 . . . . . 6 (𝜑 → (𝑀 gcd 𝑁) = 1)
73 mpodvdsmulf1o.z . . . . . 6 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
743, 10, 72, 2, 9, 73mpodvdsmulf1o 27255 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
75 fvres 6939 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
7675adantl 481 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
7763ralrimivva 3208 . . . . . . . . 9 (𝜑 → ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
7859eleq1d 2829 . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
7978ralxp 5866 . . . . . . . . 9 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
8077, 79sylibr 234 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
81 fveq2 6920 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ( · ‘𝑧) = ( · ‘𝑤))
8281csbeq1d 3925 . . . . . . . . . . 11 (𝑧 = 𝑤( · ‘𝑧) / 𝑖𝐶 = ( · ‘𝑤) / 𝑖𝐶)
8382eleq1d 2829 . . . . . . . . . 10 (𝑧 = 𝑤 → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑤) / 𝑖𝐶 ∈ ℂ))
8483cbvralvw 3243 . . . . . . . . 9 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤 ∈ (𝑋 × 𝑌)( · ‘𝑤) / 𝑖𝐶 ∈ ℂ)
85 id 22 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 ∈ (𝑋 × 𝑌))
8682eqcoms 2748 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧( · ‘𝑧) / 𝑖𝐶 = ( · ‘𝑤) / 𝑖𝐶)
8786adantl 481 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → ( · ‘𝑧) / 𝑖𝐶 = ( · ‘𝑤) / 𝑖𝐶)
8887eleq1d 2829 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑤) / 𝑖𝐶 ∈ ℂ))
8950eleq1d 2829 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋 × 𝑌) → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
9089adantr 480 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
9188, 90bitr3d 281 . . . . . . . . . . . 12 ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (( · ‘𝑤) / 𝑖𝐶 ∈ ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
9285, 91rspcdv 3627 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑌) → (∀𝑤 ∈ (𝑋 × 𝑌)( · ‘𝑤) / 𝑖𝐶 ∈ ℂ → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
9392com12 32 . . . . . . . . . 10 (∀𝑤 ∈ (𝑋 × 𝑌)( · ‘𝑤) / 𝑖𝐶 ∈ ℂ → (𝑧 ∈ (𝑋 × 𝑌) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
9493ralrimiv 3151 . . . . . . . . 9 (∀𝑤 ∈ (𝑋 × 𝑌)( · ‘𝑤) / 𝑖𝐶 ∈ ℂ → ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ)
9584, 94sylbi 217 . . . . . . . 8 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ → ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ)
9680, 95syl 17 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ)
97 mpomulf 11279 . . . . . . . . . 10 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
98 ffn 6747 . . . . . . . . . 10 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ))
9997, 98ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ)
100 xpss12 5715 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
10136, 39, 100mp2an 691 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ (ℂ × ℂ)
10269eleq1d 2829 . . . . . . . . . 10 (𝑤 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) → (𝑤 / 𝑖𝐶 ∈ ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
103102ralima 7274 . . . . . . . . 9 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → (∀𝑤 ∈ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
10499, 101, 103mp2an 691 . . . . . . . 8 (∀𝑤 ∈ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ)
105 df-ima 5713 . . . . . . . . . 10 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌)) = ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))
106 f1ofo 6869 . . . . . . . . . . 11 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍)
107 forn 6837 . . . . . . . . . . 11 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍 → ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) = 𝑍)
10874, 106, 1073syl 18 . . . . . . . . . 10 (𝜑 → ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) = 𝑍)
109105, 108eqtrid 2792 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌)) = 𝑍)
110109raleqdv 3334 . . . . . . . 8 (𝜑 → (∀𝑤 ∈ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
111104, 110bitr3id 285 . . . . . . 7 (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
11296, 111mpbid 232 . . . . . 6 (𝜑 → ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ)
113112r19.21bi 3257 . . . . 5 ((𝜑𝑤𝑍) → 𝑤 / 𝑖𝐶 ∈ ℂ)
11469, 71, 74, 76, 113fsumf1o 15771 . . . 4 (𝜑 → Σ𝑤𝑍 𝑤 / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶)
11568, 114eqtrid 2792 . . 3 (𝜑 → Σ𝑖𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶)
11651, 64, 1153eqtr4a 2806 . 2 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑖𝑍 𝐶)
11718, 26, 1163eqtrd 2784 1 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  {crab 3443  csb 3921  wss 3976  cop 4654   class class class wbr 5166   × cxp 5698  ran crn 5701  cres 5702  cima 5703   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  cc 11182  1c1 11185   · cmul 11189  cn 12293  ...cfz 13567  Σcsu 15734  cdvds 16302   gcd cgcd 16540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-gcd 16541
This theorem is referenced by:  sgmmul  27263  dchrisum0fmul  27568
  Copyright terms: Public domain W3C validator