Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Structured version   Visualization version   GIF version

Theorem fsumdvdsmul 25790
 Description: Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘 ∥ 𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1 (𝜑𝑀 ∈ ℕ)
dvdsmulf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsmulf1o.3 (𝜑 → (𝑀 gcd 𝑁) = 1)
dvdsmulf1o.x 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
dvdsmulf1o.y 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsmulf1o.z 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
fsumdvdsmul.4 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
fsumdvdsmul.5 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
fsumdvdsmul.6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
fsumdvdsmul.7 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
fsumdvdsmul (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐷,𝑖   𝑥,𝑀   𝑥,𝑁   𝑖,𝑗,𝑘,𝑋   𝐵,𝑗   𝐶,𝑗,𝑘   𝑖,𝑌,𝑗,𝑘   𝑖,𝑍,𝑗   𝑥,𝑖,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑘)   𝐶(𝑥,𝑖)   𝐷(𝑥,𝑗,𝑘)   𝑀(𝑖,𝑗,𝑘)   𝑁(𝑖,𝑗,𝑘)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑘)

Proof of Theorem fsumdvdsmul
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13339 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
2 dvdsmulf1o.x . . . . 5 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
3 dvdsmulf1o.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
4 dvdsssfz1 15663 . . . . . 6 (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
53, 4syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
62, 5eqsstrid 3963 . . . 4 (𝜑𝑋 ⊆ (1...𝑀))
71, 6ssfid 8728 . . 3 (𝜑𝑋 ∈ Fin)
8 fzfid 13339 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
9 dvdsmulf1o.y . . . . . 6 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
10 dvdsmulf1o.2 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
11 dvdsssfz1 15663 . . . . . . 7 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1210, 11syl 17 . . . . . 6 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
139, 12eqsstrid 3963 . . . . 5 (𝜑𝑌 ⊆ (1...𝑁))
148, 13ssfid 8728 . . . 4 (𝜑𝑌 ∈ Fin)
15 fsumdvdsmul.5 . . . 4 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
1614, 15fsumcl 15085 . . 3 (𝜑 → Σ𝑘𝑌 𝐵 ∈ ℂ)
17 fsumdvdsmul.4 . . 3 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
187, 16, 17fsummulc1 15135 . 2 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵))
1914adantr 484 . . . . 5 ((𝜑𝑗𝑋) → 𝑌 ∈ Fin)
2015adantlr 714 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → 𝐵 ∈ ℂ)
2119, 17, 20fsummulc2 15134 . . . 4 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 (𝐴 · 𝐵))
22 fsumdvdsmul.6 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
2322anassrs 471 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → (𝐴 · 𝐵) = 𝐷)
2423sumeq2dv 15055 . . . 4 ((𝜑𝑗𝑋) → Σ𝑘𝑌 (𝐴 · 𝐵) = Σ𝑘𝑌 𝐷)
2521, 24eqtrd 2833 . . 3 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 𝐷)
2625sumeq2dv 15055 . 2 (𝜑 → Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 Σ𝑘𝑌 𝐷)
27 fveq2 6646 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = ( · ‘⟨𝑗, 𝑘⟩))
28 df-ov 7139 . . . . . . 7 (𝑗 · 𝑘) = ( · ‘⟨𝑗, 𝑘⟩)
2927, 28eqtr4di 2851 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = (𝑗 · 𝑘))
3029csbeq1d 3832 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = (𝑗 · 𝑘) / 𝑖𝐶)
31 ovex 7169 . . . . . 6 (𝑗 · 𝑘) ∈ V
32 fsumdvdsmul.7 . . . . . 6 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
3331, 32csbie 3863 . . . . 5 (𝑗 · 𝑘) / 𝑖𝐶 = 𝐷
3430, 33eqtrdi 2849 . . . 4 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = 𝐷)
3517adantrr 716 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐴 ∈ ℂ)
3615adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐵 ∈ ℂ)
3735, 36mulcld 10653 . . . . 5 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) ∈ ℂ)
3822, 37eqeltrrd 2891 . . . 4 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐷 ∈ ℂ)
3934, 7, 14, 38fsumxp 15122 . . 3 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
40 nfcv 2955 . . . . 5 𝑤𝐶
41 nfcsb1v 3852 . . . . 5 𝑖𝑤 / 𝑖𝐶
42 csbeq1a 3842 . . . . 5 (𝑖 = 𝑤𝐶 = 𝑤 / 𝑖𝐶)
4340, 41, 42cbvsumi 15049 . . . 4 Σ𝑖𝑍 𝐶 = Σ𝑤𝑍 𝑤 / 𝑖𝐶
44 csbeq1 3831 . . . . 5 (𝑤 = ( · ‘𝑧) → 𝑤 / 𝑖𝐶 = ( · ‘𝑧) / 𝑖𝐶)
45 xpfi 8776 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin)
467, 14, 45syl2anc 587 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ Fin)
47 dvdsmulf1o.3 . . . . . 6 (𝜑 → (𝑀 gcd 𝑁) = 1)
48 dvdsmulf1o.z . . . . . 6 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
493, 10, 47, 2, 9, 48dvdsmulf1o 25789 . . . . 5 (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
50 fvres 6665 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5150adantl 485 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5238ralrimivva 3156 . . . . . . . 8 (𝜑 → ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5334eleq1d 2874 . . . . . . . . 9 (𝑧 = ⟨𝑗, 𝑘⟩ → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
5453ralxp 5677 . . . . . . . 8 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5552, 54sylibr 237 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
56 ax-mulf 10609 . . . . . . . . . 10 · :(ℂ × ℂ)⟶ℂ
57 ffn 6488 . . . . . . . . . 10 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
5856, 57ax-mp 5 . . . . . . . . 9 · Fn (ℂ × ℂ)
592ssrab3 4008 . . . . . . . . . . 11 𝑋 ⊆ ℕ
60 nnsscn 11633 . . . . . . . . . . 11 ℕ ⊆ ℂ
6159, 60sstri 3924 . . . . . . . . . 10 𝑋 ⊆ ℂ
629ssrab3 4008 . . . . . . . . . . 11 𝑌 ⊆ ℕ
6362, 60sstri 3924 . . . . . . . . . 10 𝑌 ⊆ ℂ
64 xpss12 5535 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
6561, 63, 64mp2an 691 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ (ℂ × ℂ)
6644eleq1d 2874 . . . . . . . . . 10 (𝑤 = ( · ‘𝑧) → (𝑤 / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
6766ralima 6979 . . . . . . . . 9 (( · Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
6858, 65, 67mp2an 691 . . . . . . . 8 (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
69 df-ima 5533 . . . . . . . . . 10 ( · “ (𝑋 × 𝑌)) = ran ( · ↾ (𝑋 × 𝑌))
70 f1ofo 6598 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍)
71 forn 6569 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7249, 70, 713syl 18 . . . . . . . . . 10 (𝜑 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7369, 72syl5eq 2845 . . . . . . . . 9 (𝜑 → ( · “ (𝑋 × 𝑌)) = 𝑍)
7473raleqdv 3364 . . . . . . . 8 (𝜑 → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
7568, 74bitr3id 288 . . . . . . 7 (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
7655, 75mpbid 235 . . . . . 6 (𝜑 → ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ)
7776r19.21bi 3173 . . . . 5 ((𝜑𝑤𝑍) → 𝑤 / 𝑖𝐶 ∈ ℂ)
7844, 46, 49, 51, 77fsumf1o 15075 . . . 4 (𝜑 → Σ𝑤𝑍 𝑤 / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
7943, 78syl5eq 2845 . . 3 (𝜑 → Σ𝑖𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
8039, 79eqtr4d 2836 . 2 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑖𝑍 𝐶)
8118, 26, 803eqtrd 2837 1 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110  ⦋csb 3828   ⊆ wss 3881  ⟨cop 4531   class class class wbr 5031   × cxp 5518  ran crn 5521   ↾ cres 5522   “ cima 5523   Fn wfn 6320  ⟶wf 6321  –onto→wfo 6323  –1-1-onto→wf1o 6324  ‘cfv 6325  (class class class)co 7136  Fincfn 8495  ℂcc 10527  1c1 10530   · cmul 10534  ℕcn 11628  ...cfz 12888  Σcsu 15037   ∥ cdvds 15602   gcd cgcd 15836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-fz 12889  df-fzo 13032  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-dvds 15603  df-gcd 15837 This theorem is referenced by:  sgmmul  25795  dchrisum0fmul  26100
 Copyright terms: Public domain W3C validator