Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptnn0fsuppd | Structured version Visualization version GIF version |
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.) |
Ref | Expression |
---|---|
mptnn0fsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑉) |
mptnn0fsupp.c | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) |
mptnn0fsuppd.d | ⊢ (𝑘 = 𝑥 → 𝐶 = 𝐷) |
mptnn0fsuppd.s | ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 )) |
Ref | Expression |
---|---|
mptnn0fsuppd | ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptnn0fsupp.0 | . 2 ⊢ (𝜑 → 0 ∈ 𝑉) | |
2 | mptnn0fsupp.c | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) | |
3 | mptnn0fsuppd.s | . . 3 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 )) | |
4 | vex 3431 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | mptnn0fsuppd.d | . . . . . . . 8 ⊢ (𝑘 = 𝑥 → 𝐶 = 𝐷) | |
6 | 4, 5 | csbie 3869 | . . . . . . 7 ⊢ ⦋𝑥 / 𝑘⦌𝐶 = 𝐷 |
7 | id 22 | . . . . . . 7 ⊢ (𝐷 = 0 → 𝐷 = 0 ) | |
8 | 6, 7 | eqtrid 2789 | . . . . . 6 ⊢ (𝐷 = 0 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) |
9 | 8 | imim2i 16 | . . . . 5 ⊢ ((𝑠 < 𝑥 → 𝐷 = 0 ) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
10 | 9 | ralimi 3085 | . . . 4 ⊢ (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
11 | 10 | reximi 3173 | . . 3 ⊢ (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 ) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
12 | 3, 11 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
13 | 1, 2, 12 | mptnn0fsupp 13661 | 1 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3062 ∃wrex 3063 ⦋csb 3833 class class class wbr 5075 ↦ cmpt 5158 finSupp cfsupp 9074 < clt 10956 ℕ0cn0 12179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-supp 7954 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-fsupp 9075 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-n0 12180 df-z 12266 df-uz 12528 df-fz 13185 |
This theorem is referenced by: decpmatfsupp 21862 decpmatmulsumfsupp 21866 pmatcollpw1lem1 21867 pm2mpmhmlem1 21911 cpmidpmatlem3 21965 |
Copyright terms: Public domain | W3C validator |