![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptnn0fsuppd | Structured version Visualization version GIF version |
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.) |
Ref | Expression |
---|---|
mptnn0fsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑉) |
mptnn0fsupp.c | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) |
mptnn0fsuppd.d | ⊢ (𝑘 = 𝑥 → 𝐶 = 𝐷) |
mptnn0fsuppd.s | ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 )) |
Ref | Expression |
---|---|
mptnn0fsuppd | ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptnn0fsupp.0 | . 2 ⊢ (𝜑 → 0 ∈ 𝑉) | |
2 | mptnn0fsupp.c | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) | |
3 | mptnn0fsuppd.s | . . 3 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 )) | |
4 | vex 3386 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | mptnn0fsuppd.d | . . . . . . . 8 ⊢ (𝑘 = 𝑥 → 𝐶 = 𝐷) | |
6 | 4, 5 | csbie 3752 | . . . . . . 7 ⊢ ⦋𝑥 / 𝑘⦌𝐶 = 𝐷 |
7 | id 22 | . . . . . . 7 ⊢ (𝐷 = 0 → 𝐷 = 0 ) | |
8 | 6, 7 | syl5eq 2843 | . . . . . 6 ⊢ (𝐷 = 0 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) |
9 | 8 | imim2i 16 | . . . . 5 ⊢ ((𝑠 < 𝑥 → 𝐷 = 0 ) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
10 | 9 | ralimi 3131 | . . . 4 ⊢ (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
11 | 10 | reximi 3189 | . . 3 ⊢ (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 ) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
12 | 3, 11 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
13 | 1, 2, 12 | mptnn0fsupp 13047 | 1 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 ⦋csb 3726 class class class wbr 4841 ↦ cmpt 4920 finSupp cfsupp 8515 < clt 10361 ℕ0cn0 11576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-n0 11577 df-z 11663 df-uz 11927 df-fz 12577 |
This theorem is referenced by: decpmatfsupp 20898 decpmatmulsumfsupp 20902 pmatcollpw1lem1 20903 pm2mpmhmlem1 20947 cpmidpmatlem3 21001 |
Copyright terms: Public domain | W3C validator |