Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppd Structured version   Visualization version   GIF version

Theorem mptnn0fsuppd 13356
 Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsuppd.d (𝑘 = 𝑥𝐶 = 𝐷)
mptnn0fsuppd.s (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ))
Assertion
Ref Expression
mptnn0fsuppd (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥   𝐷,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝐷(𝑥,𝑠)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsuppd
StepHypRef Expression
1 mptnn0fsupp.0 . 2 (𝜑0𝑉)
2 mptnn0fsupp.c . 2 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
3 mptnn0fsuppd.s . . 3 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ))
4 vex 3503 . . . . . . . 8 𝑥 ∈ V
5 mptnn0fsuppd.d . . . . . . . 8 (𝑘 = 𝑥𝐶 = 𝐷)
64, 5csbie 3922 . . . . . . 7 𝑥 / 𝑘𝐶 = 𝐷
7 id 22 . . . . . . 7 (𝐷 = 0𝐷 = 0 )
86, 7syl5eq 2873 . . . . . 6 (𝐷 = 0𝑥 / 𝑘𝐶 = 0 )
98imim2i 16 . . . . 5 ((𝑠 < 𝑥𝐷 = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
109ralimi 3165 . . . 4 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
1110reximi 3248 . . 3 (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
123, 11syl 17 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
131, 2, 12mptnn0fsupp 13355 1 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107  ∀wral 3143  ∃wrex 3144  ⦋csb 3887   class class class wbr 5063   ↦ cmpt 5143   finSupp cfsupp 8822   < clt 10664  ℕ0cn0 11886 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883 This theorem is referenced by:  decpmatfsupp  21293  decpmatmulsumfsupp  21297  pmatcollpw1lem1  21298  pm2mpmhmlem1  21342  cpmidpmatlem3  21396
 Copyright terms: Public domain W3C validator