MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppd Structured version   Visualization version   GIF version

Theorem mptnn0fsuppd 14018
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsuppd.d (𝑘 = 𝑥𝐶 = 𝐷)
mptnn0fsuppd.s (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ))
Assertion
Ref Expression
mptnn0fsuppd (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥   𝐷,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝐷(𝑥,𝑠)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsuppd
StepHypRef Expression
1 mptnn0fsupp.0 . 2 (𝜑0𝑉)
2 mptnn0fsupp.c . 2 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
3 mptnn0fsuppd.s . . 3 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ))
4 vex 3466 . . . . . . . 8 𝑥 ∈ V
5 mptnn0fsuppd.d . . . . . . . 8 (𝑘 = 𝑥𝐶 = 𝐷)
64, 5csbie 3928 . . . . . . 7 𝑥 / 𝑘𝐶 = 𝐷
7 id 22 . . . . . . 7 (𝐷 = 0𝐷 = 0 )
86, 7eqtrid 2778 . . . . . 6 (𝐷 = 0𝑥 / 𝑘𝐶 = 0 )
98imim2i 16 . . . . 5 ((𝑠 < 𝑥𝐷 = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
109ralimi 3073 . . . 4 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
1110reximi 3074 . . 3 (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
123, 11syl 17 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
131, 2, 12mptnn0fsupp 14017 1 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  csb 3892   class class class wbr 5153  cmpt 5236   finSupp cfsupp 9405   < clt 11298  0cn0 12524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539
This theorem is referenced by:  evls1fpws  22360  decpmatfsupp  22762  decpmatmulsumfsupp  22766  pmatcollpw1lem1  22767  pm2mpmhmlem1  22811  cpmidpmatlem3  22865  evl1deg1  33448  evl1deg2  33449  evl1deg3  33450
  Copyright terms: Public domain W3C validator