Step | Hyp | Ref
| Expression |
1 | | fznn0sub2 13292 |
. . . . . . 7
⊢ (𝑛 ∈ (0...(𝑁 − 𝑗)) → ((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗))) |
2 | 1 | ad2antll 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗))) |
3 | | fsum0diag2.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) |
4 | 3 | expr 456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑘 ∈ (0...(𝑁 − 𝑗)) → 𝐴 ∈ ℂ)) |
5 | 4 | ralrimiv 3106 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 ∈ ℂ) |
6 | | fsum0diag2.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴) |
7 | 6 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
8 | 7 | cbvralvw 3372 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(0...(𝑁 − 𝑗))𝐵 ∈ ℂ ↔ ∀𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 ∈ ℂ) |
9 | 5, 8 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) |
10 | 9 | adantrr 713 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) |
11 | | nfcsb1v 3853 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 |
12 | 11 | nfel1 2922 |
. . . . . . 7
⊢
Ⅎ𝑥⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ |
13 | | csbeq1a 3842 |
. . . . . . . 8
⊢ (𝑥 = ((𝑁 − 𝑗) − 𝑛) → 𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
14 | 13 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = ((𝑁 − 𝑗) − 𝑛) → (𝐵 ∈ ℂ ↔
⦋((𝑁 −
𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ)) |
15 | 12, 14 | rspc 3539 |
. . . . . 6
⊢ (((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ →
⦋((𝑁 −
𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ)) |
16 | 2, 10, 15 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ) |
17 | 16 | fsum0diag 15417 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
18 | | nfcsb1v 3853 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑘 / 𝑥⦌𝐵 |
19 | 18 | nfel1 2922 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ |
20 | | csbeq1a 3842 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑥⦌𝐵) |
21 | 20 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ)) |
22 | 19, 21 | rspc 3539 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ → ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ)) |
23 | 9, 22 | mpan9 506 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ) |
24 | | csbeq1 3831 |
. . . . . . 7
⊢ (𝑘 = ((0 + (𝑁 − 𝑗)) − 𝑛) → ⦋𝑘 / 𝑥⦌𝐵 = ⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵) |
25 | 23, 24 | fsumrev2 15422 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵) |
26 | | elfz3nn0 13279 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈
ℕ0) |
27 | 26 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈
ℕ0) |
28 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) |
29 | 28 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ ℤ) |
30 | | nn0cn 12173 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
31 | | zcn 12254 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) |
32 | | subcl 11150 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑁 − 𝑗) ∈ ℂ) |
33 | 30, 31, 32 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ (𝑁 − 𝑗) ∈
ℂ) |
34 | 27, 29, 33 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑗) ∈ ℂ) |
35 | | addid2 11088 |
. . . . . . . . . 10
⊢ ((𝑁 − 𝑗) ∈ ℂ → (0 + (𝑁 − 𝑗)) = (𝑁 − 𝑗)) |
36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → (0 + (𝑁 − 𝑗)) = (𝑁 − 𝑗)) |
37 | 36 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → ((0 + (𝑁 − 𝑗)) − 𝑛) = ((𝑁 − 𝑗) − 𝑛)) |
38 | 37 | csbeq1d 3832 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → ⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
39 | 38 | sumeq2dv 15343 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
40 | 25, 39 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
41 | 40 | sumeq2dv 15343 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑁)Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
42 | | elfz3nn0 13279 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...𝑁) → 𝑁 ∈
ℕ0) |
43 | 42 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) |
44 | | addid2 11088 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (0 +
𝑁) = 𝑁) |
45 | 43, 30, 44 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (0 + 𝑁) = 𝑁) |
46 | 45 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → ((0 + 𝑁) − 𝑛) = (𝑁 − 𝑛)) |
47 | 46 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (0...((0 + 𝑁) − 𝑛)) = (0...(𝑁 − 𝑛))) |
48 | 46 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑛) − 𝑗)) |
49 | 48 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑛) − 𝑗)) |
50 | 42 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑁 ∈
ℕ0) |
51 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ) |
52 | 51 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑛 ∈ ℤ) |
53 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...(𝑁 − 𝑛)) → 𝑗 ∈ ℤ) |
54 | 53 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑗 ∈ ℤ) |
55 | | zcn 12254 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
56 | | sub32 11185 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) |
57 | 30, 55, 31, 56 | syl3an 1158 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑛 ∈ ℤ
∧ 𝑗 ∈ ℤ)
→ ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) |
58 | 50, 52, 54, 57 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) |
59 | 49, 58 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) |
60 | 59 | csbeq1d 3832 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
61 | 47, 60 | sumeq12rdv 15347 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
62 | 61 | sumeq2dv 15343 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
63 | 17, 41, 62 | 3eqtr4d 2788 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
64 | | fzfid 13621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (0...𝑘) ∈ Fin) |
65 | | elfzuz3 13182 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...𝑘) → 𝑘 ∈ (ℤ≥‘𝑗)) |
66 | 65 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (ℤ≥‘𝑗)) |
67 | | elfzuz3 13182 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) |
68 | 67 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
69 | 68 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
70 | | elfzuzb 13179 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑗) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) |
71 | 66, 69, 70 | sylanbrc 582 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (𝑗...𝑁)) |
72 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℤ) |
73 | 72 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ) |
74 | | elfzel2 13183 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ) |
75 | 74 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ ℤ) |
76 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) |
77 | 76 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ) |
78 | | fzsubel 13221 |
. . . . . . . . 9
⊢ (((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗)))) |
79 | 73, 75, 77, 73, 78 | syl22anc 835 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗)))) |
80 | 71, 79 | mpbid 231 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗))) |
81 | | subid 11170 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℂ → (𝑗 − 𝑗) = 0) |
82 | 73, 31, 81 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑗 − 𝑗) = 0) |
83 | 82 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑗 − 𝑗)...(𝑁 − 𝑗)) = (0...(𝑁 − 𝑗))) |
84 | 80, 83 | eleqtrd 2841 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈ (0...(𝑁 − 𝑗))) |
85 | | simpll 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝜑) |
86 | | fzss2 13225 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑘) → (0...𝑘) ⊆ (0...𝑁)) |
87 | 68, 86 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (0...𝑘) ⊆ (0...𝑁)) |
88 | 87 | sselda 3917 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ (0...𝑁)) |
89 | 85, 88, 9 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) |
90 | | nfcsb1v 3853 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 |
91 | 90 | nfel1 2922 |
. . . . . . 7
⊢
Ⅎ𝑥⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ |
92 | | csbeq1a 3842 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵) |
93 | 92 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = (𝑘 − 𝑗) → (𝐵 ∈ ℂ ↔ ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ)) |
94 | 91, 93 | rspc 3539 |
. . . . . 6
⊢ ((𝑘 − 𝑗) ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ)) |
95 | 84, 89, 94 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ) |
96 | 64, 95 | fsumcl 15373 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ) |
97 | | oveq2 7263 |
. . . . 5
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → (0...𝑘) = (0...((0 + 𝑁) − 𝑛))) |
98 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘 − 𝑗) = (((0 + 𝑁) − 𝑛) − 𝑗)) |
99 | 98 | csbeq1d 3832 |
. . . . . 6
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
100 | 99 | adantr 480 |
. . . . 5
⊢ ((𝑘 = ((0 + 𝑁) − 𝑛) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
101 | 97, 100 | sumeq12dv 15346 |
. . . 4
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
102 | 96, 101 | fsumrev2 15422 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
103 | 63, 102 | eqtr4d 2781 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵) |
104 | | vex 3426 |
. . . . . 6
⊢ 𝑘 ∈ V |
105 | 104, 6 | csbie 3864 |
. . . . 5
⊢
⦋𝑘 /
𝑥⦌𝐵 = 𝐴 |
106 | 105 | a1i 11 |
. . . 4
⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → ⦋𝑘 / 𝑥⦌𝐵 = 𝐴) |
107 | 106 | sumeq2dv 15343 |
. . 3
⊢ (𝑗 ∈ (0...𝑁) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴) |
108 | 107 | sumeq2i 15339 |
. 2
⊢
Σ𝑗 ∈
(0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 |
109 | | ovex 7288 |
. . . . . 6
⊢ (𝑘 − 𝑗) ∈ V |
110 | | fsum0diag2.2 |
. . . . . 6
⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶) |
111 | 109, 110 | csbie 3864 |
. . . . 5
⊢
⦋(𝑘
− 𝑗) / 𝑥⦌𝐵 = 𝐶 |
112 | 111 | a1i 11 |
. . . 4
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = 𝐶) |
113 | 112 | sumeq2dv 15343 |
. . 3
⊢ (𝑘 ∈ (0...𝑁) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑘)𝐶) |
114 | 113 | sumeq2i 15339 |
. 2
⊢
Σ𝑘 ∈
(0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶 |
115 | 103, 108,
114 | 3eqtr3g 2802 |
1
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) |