| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnct | Structured version Visualization version GIF version | ||
| Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fnct | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex 8886 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐴 ∈ V) |
| 3 | fndm 6584 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq1d 2816 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
| 6 | 2, 5 | mpbird 257 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → dom 𝐹 ∈ V) |
| 7 | fnfun 6581 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → Fun 𝐹) |
| 9 | funrnex 7886 | . . . . 5 ⊢ (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 10 | 6, 8, 9 | sylc 65 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ∈ V) |
| 11 | 2, 10 | xpexd 7684 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ∈ V) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 Fn 𝐴) | |
| 13 | dffn3 6663 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
| 14 | 12, 13 | sylib 218 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹:𝐴⟶ran 𝐹) |
| 15 | fssxp 6678 | . . . 4 ⊢ (𝐹:𝐴⟶ran 𝐹 → 𝐹 ⊆ (𝐴 × ran 𝐹)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ⊆ (𝐴 × ran 𝐹)) |
| 17 | ssdomg 8922 | . . 3 ⊢ ((𝐴 × ran 𝐹) ∈ V → (𝐹 ⊆ (𝐴 × ran 𝐹) → 𝐹 ≼ (𝐴 × ran 𝐹))) | |
| 18 | 11, 16, 17 | sylc 65 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ (𝐴 × ran 𝐹)) |
| 19 | xpdom1g 8987 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹)) | |
| 20 | 10, 19 | sylancom 588 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹)) |
| 21 | omex 9533 | . . . . 5 ⊢ ω ∈ V | |
| 22 | fnrndomg 10424 | . . . . . . 7 ⊢ (𝐴 ∈ V → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) | |
| 23 | 2, 12, 22 | sylc 65 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ 𝐴) |
| 24 | domtr 8929 | . . . . . 6 ⊢ ((ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ ω) | |
| 25 | 23, 24 | sylancom 588 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ ω) |
| 26 | xpdom2g 8986 | . . . . 5 ⊢ ((ω ∈ V ∧ ran 𝐹 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω)) | |
| 27 | 21, 25, 26 | sylancr 587 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω)) |
| 28 | domtr 8929 | . . . 4 ⊢ (((𝐴 × ran 𝐹) ≼ (ω × ran 𝐹) ∧ (ω × ran 𝐹) ≼ (ω × ω)) → (𝐴 × ran 𝐹) ≼ (ω × ω)) | |
| 29 | 20, 27, 28 | syl2anc 584 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ω)) |
| 30 | xpomen 9903 | . . 3 ⊢ (ω × ω) ≈ ω | |
| 31 | domentr 8935 | . . 3 ⊢ (((𝐴 × ran 𝐹) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ran 𝐹) ≼ ω) | |
| 32 | 29, 30, 31 | sylancl 586 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ ω) |
| 33 | domtr 8929 | . 2 ⊢ ((𝐹 ≼ (𝐴 × ran 𝐹) ∧ (𝐴 × ran 𝐹) ≼ ω) → 𝐹 ≼ ω) | |
| 34 | 18, 32, 33 | syl2anc 584 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 × cxp 5614 dom cdm 5616 ran crn 5617 Fun wfun 6475 Fn wfn 6476 ⟶wf 6477 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-ac2 10351 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-card 9829 df-acn 9832 df-ac 10004 |
| This theorem is referenced by: mptct 10426 mpocti 32692 mptctf 32694 omssubadd 34308 |
| Copyright terms: Public domain | W3C validator |