| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnct | Structured version Visualization version GIF version | ||
| Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fnct | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex 8896 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐴 ∈ V) |
| 3 | fndm 6589 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq1d 2813 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
| 6 | 2, 5 | mpbird 257 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → dom 𝐹 ∈ V) |
| 7 | fnfun 6586 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → Fun 𝐹) |
| 9 | funrnex 7896 | . . . . 5 ⊢ (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 10 | 6, 8, 9 | sylc 65 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ∈ V) |
| 11 | 2, 10 | xpexd 7691 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ∈ V) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 Fn 𝐴) | |
| 13 | dffn3 6668 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
| 14 | 12, 13 | sylib 218 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹:𝐴⟶ran 𝐹) |
| 15 | fssxp 6683 | . . . 4 ⊢ (𝐹:𝐴⟶ran 𝐹 → 𝐹 ⊆ (𝐴 × ran 𝐹)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ⊆ (𝐴 × ran 𝐹)) |
| 17 | ssdomg 8932 | . . 3 ⊢ ((𝐴 × ran 𝐹) ∈ V → (𝐹 ⊆ (𝐴 × ran 𝐹) → 𝐹 ≼ (𝐴 × ran 𝐹))) | |
| 18 | 11, 16, 17 | sylc 65 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ (𝐴 × ran 𝐹)) |
| 19 | xpdom1g 8998 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹)) | |
| 20 | 10, 19 | sylancom 588 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹)) |
| 21 | omex 9558 | . . . . 5 ⊢ ω ∈ V | |
| 22 | fnrndomg 10449 | . . . . . . 7 ⊢ (𝐴 ∈ V → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) | |
| 23 | 2, 12, 22 | sylc 65 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ 𝐴) |
| 24 | domtr 8939 | . . . . . 6 ⊢ ((ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ ω) | |
| 25 | 23, 24 | sylancom 588 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ ω) |
| 26 | xpdom2g 8997 | . . . . 5 ⊢ ((ω ∈ V ∧ ran 𝐹 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω)) | |
| 27 | 21, 25, 26 | sylancr 587 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω)) |
| 28 | domtr 8939 | . . . 4 ⊢ (((𝐴 × ran 𝐹) ≼ (ω × ran 𝐹) ∧ (ω × ran 𝐹) ≼ (ω × ω)) → (𝐴 × ran 𝐹) ≼ (ω × ω)) | |
| 29 | 20, 27, 28 | syl2anc 584 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ω)) |
| 30 | xpomen 9928 | . . 3 ⊢ (ω × ω) ≈ ω | |
| 31 | domentr 8945 | . . 3 ⊢ (((𝐴 × ran 𝐹) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ran 𝐹) ≼ ω) | |
| 32 | 29, 30, 31 | sylancl 586 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ ω) |
| 33 | domtr 8939 | . 2 ⊢ ((𝐹 ≼ (𝐴 × ran 𝐹) ∧ (𝐴 × ran 𝐹) ≼ ω) → 𝐹 ≼ ω) | |
| 34 | 18, 32, 33 | syl2anc 584 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 × cxp 5621 dom cdm 5623 ran crn 5624 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 ωcom 7806 ≈ cen 8876 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-ac2 10376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-card 9854 df-acn 9857 df-ac 10029 |
| This theorem is referenced by: mptct 10451 mpocti 32672 mptctf 32674 omssubadd 34267 |
| Copyright terms: Public domain | W3C validator |