MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnct Structured version   Visualization version   GIF version

Theorem fnct 10403
Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
fnct ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ ω)

Proof of Theorem fnct
StepHypRef Expression
1 ctex 8833 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
21adantl 483 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐴 ∈ V)
3 fndm 6597 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43eleq1d 2822 . . . . . . 7 (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
54adantr 482 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
62, 5mpbird 257 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → dom 𝐹 ∈ V)
7 fnfun 6594 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
87adantr 482 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → Fun 𝐹)
9 funrnex 7873 . . . . 5 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
106, 8, 9sylc 65 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹 ∈ V)
112, 10xpexd 7672 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ∈ V)
12 simpl 484 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 Fn 𝐴)
13 dffn3 6673 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1412, 13sylib 217 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹:𝐴⟶ran 𝐹)
15 fssxp 6688 . . . 4 (𝐹:𝐴⟶ran 𝐹𝐹 ⊆ (𝐴 × ran 𝐹))
1614, 15syl 17 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ⊆ (𝐴 × ran 𝐹))
17 ssdomg 8870 . . 3 ((𝐴 × ran 𝐹) ∈ V → (𝐹 ⊆ (𝐴 × ran 𝐹) → 𝐹 ≼ (𝐴 × ran 𝐹)))
1811, 16, 17sylc 65 . 2 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ (𝐴 × ran 𝐹))
19 xpdom1g 8943 . . . . 5 ((ran 𝐹 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹))
2010, 19sylancom 589 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹))
21 omex 9509 . . . . 5 ω ∈ V
22 fnrndomg 10402 . . . . . . 7 (𝐴 ∈ V → (𝐹 Fn 𝐴 → ran 𝐹𝐴))
232, 12, 22sylc 65 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹𝐴)
24 domtr 8877 . . . . . 6 ((ran 𝐹𝐴𝐴 ≼ ω) → ran 𝐹 ≼ ω)
2523, 24sylancom 589 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹 ≼ ω)
26 xpdom2g 8942 . . . . 5 ((ω ∈ V ∧ ran 𝐹 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω))
2721, 25, 26sylancr 588 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω))
28 domtr 8877 . . . 4 (((𝐴 × ran 𝐹) ≼ (ω × ran 𝐹) ∧ (ω × ran 𝐹) ≼ (ω × ω)) → (𝐴 × ran 𝐹) ≼ (ω × ω))
2920, 27, 28syl2anc 585 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ω))
30 xpomen 9881 . . 3 (ω × ω) ≈ ω
31 domentr 8883 . . 3 (((𝐴 × ran 𝐹) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ran 𝐹) ≼ ω)
3229, 30, 31sylancl 587 . 2 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ ω)
33 domtr 8877 . 2 ((𝐹 ≼ (𝐴 × ran 𝐹) ∧ (𝐴 × ran 𝐹) ≼ ω) → 𝐹 ≼ ω)
3418, 32, 33syl2anc 585 1 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2106  Vcvv 3443  wss 3905   class class class wbr 5100   × cxp 5625  dom cdm 5627  ran crn 5628  Fun wfun 6482   Fn wfn 6483  wf 6484  ωcom 7789  cen 8810  cdom 8811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-ac2 10329
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-oi 9376  df-card 9805  df-acn 9808  df-ac 9982
This theorem is referenced by:  mptct  10404  mpocti  31401  mptctf  31403  omssubadd  32631
  Copyright terms: Public domain W3C validator