| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnct | Structured version Visualization version GIF version | ||
| Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fnct | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex 8935 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐴 ∈ V) |
| 3 | fndm 6621 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq1d 2813 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
| 6 | 2, 5 | mpbird 257 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → dom 𝐹 ∈ V) |
| 7 | fnfun 6618 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → Fun 𝐹) |
| 9 | funrnex 7932 | . . . . 5 ⊢ (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 10 | 6, 8, 9 | sylc 65 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ∈ V) |
| 11 | 2, 10 | xpexd 7727 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ∈ V) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 Fn 𝐴) | |
| 13 | dffn3 6700 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
| 14 | 12, 13 | sylib 218 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹:𝐴⟶ran 𝐹) |
| 15 | fssxp 6715 | . . . 4 ⊢ (𝐹:𝐴⟶ran 𝐹 → 𝐹 ⊆ (𝐴 × ran 𝐹)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ⊆ (𝐴 × ran 𝐹)) |
| 17 | ssdomg 8971 | . . 3 ⊢ ((𝐴 × ran 𝐹) ∈ V → (𝐹 ⊆ (𝐴 × ran 𝐹) → 𝐹 ≼ (𝐴 × ran 𝐹))) | |
| 18 | 11, 16, 17 | sylc 65 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ (𝐴 × ran 𝐹)) |
| 19 | xpdom1g 9038 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹)) | |
| 20 | 10, 19 | sylancom 588 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹)) |
| 21 | omex 9596 | . . . . 5 ⊢ ω ∈ V | |
| 22 | fnrndomg 10489 | . . . . . . 7 ⊢ (𝐴 ∈ V → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) | |
| 23 | 2, 12, 22 | sylc 65 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ 𝐴) |
| 24 | domtr 8978 | . . . . . 6 ⊢ ((ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ ω) | |
| 25 | 23, 24 | sylancom 588 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ ω) |
| 26 | xpdom2g 9037 | . . . . 5 ⊢ ((ω ∈ V ∧ ran 𝐹 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω)) | |
| 27 | 21, 25, 26 | sylancr 587 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω)) |
| 28 | domtr 8978 | . . . 4 ⊢ (((𝐴 × ran 𝐹) ≼ (ω × ran 𝐹) ∧ (ω × ran 𝐹) ≼ (ω × ω)) → (𝐴 × ran 𝐹) ≼ (ω × ω)) | |
| 29 | 20, 27, 28 | syl2anc 584 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ω)) |
| 30 | xpomen 9968 | . . 3 ⊢ (ω × ω) ≈ ω | |
| 31 | domentr 8984 | . . 3 ⊢ (((𝐴 × ran 𝐹) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ran 𝐹) ≼ ω) | |
| 32 | 29, 30, 31 | sylancl 586 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ ω) |
| 33 | domtr 8978 | . 2 ⊢ ((𝐹 ≼ (𝐴 × ran 𝐹) ∧ (𝐴 × ran 𝐹) ≼ ω) → 𝐹 ≼ ω) | |
| 34 | 18, 32, 33 | syl2anc 584 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 dom cdm 5638 ran crn 5639 Fun wfun 6505 Fn wfn 6506 ⟶wf 6507 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-card 9892 df-acn 9895 df-ac 10069 |
| This theorem is referenced by: mptct 10491 mpocti 32639 mptctf 32641 omssubadd 34291 |
| Copyright terms: Public domain | W3C validator |