MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnct Structured version   Visualization version   GIF version

Theorem fnct 9694
Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
fnct ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ ω)

Proof of Theorem fnct
StepHypRef Expression
1 ctex 8256 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
21adantl 475 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐴 ∈ V)
3 fndm 6235 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43eleq1d 2844 . . . . . . 7 (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
54adantr 474 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
62, 5mpbird 249 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → dom 𝐹 ∈ V)
7 fnfun 6233 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
87adantr 474 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → Fun 𝐹)
9 funrnex 7412 . . . . 5 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
106, 8, 9sylc 65 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹 ∈ V)
112, 10xpexd 7238 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ∈ V)
12 simpl 476 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 Fn 𝐴)
13 dffn3 6302 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1412, 13sylib 210 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹:𝐴⟶ran 𝐹)
15 fssxp 6310 . . . 4 (𝐹:𝐴⟶ran 𝐹𝐹 ⊆ (𝐴 × ran 𝐹))
1614, 15syl 17 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ⊆ (𝐴 × ran 𝐹))
17 ssdomg 8287 . . 3 ((𝐴 × ran 𝐹) ∈ V → (𝐹 ⊆ (𝐴 × ran 𝐹) → 𝐹 ≼ (𝐴 × ran 𝐹)))
1811, 16, 17sylc 65 . 2 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ (𝐴 × ran 𝐹))
19 xpdom1g 8345 . . . . 5 ((ran 𝐹 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹))
2010, 19sylancom 582 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹))
21 omex 8837 . . . . 5 ω ∈ V
22 fnrndomg 9693 . . . . . . 7 (𝐴 ∈ V → (𝐹 Fn 𝐴 → ran 𝐹𝐴))
232, 12, 22sylc 65 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹𝐴)
24 domtr 8294 . . . . . 6 ((ran 𝐹𝐴𝐴 ≼ ω) → ran 𝐹 ≼ ω)
2523, 24sylancom 582 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹 ≼ ω)
26 xpdom2g 8344 . . . . 5 ((ω ∈ V ∧ ran 𝐹 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω))
2721, 25, 26sylancr 581 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω))
28 domtr 8294 . . . 4 (((𝐴 × ran 𝐹) ≼ (ω × ran 𝐹) ∧ (ω × ran 𝐹) ≼ (ω × ω)) → (𝐴 × ran 𝐹) ≼ (ω × ω))
2920, 27, 28syl2anc 579 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ω))
30 xpomen 9171 . . 3 (ω × ω) ≈ ω
31 domentr 8300 . . 3 (((𝐴 × ran 𝐹) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ran 𝐹) ≼ ω)
3229, 30, 31sylancl 580 . 2 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ ω)
33 domtr 8294 . 2 ((𝐹 ≼ (𝐴 × ran 𝐹) ∧ (𝐴 × ran 𝐹) ≼ ω) → 𝐹 ≼ ω)
3418, 32, 33syl2anc 579 1 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2107  Vcvv 3398  wss 3792   class class class wbr 4886   × cxp 5353  dom cdm 5355  ran crn 5356  Fun wfun 6129   Fn wfn 6130  wf 6131  ωcom 7343  cen 8238  cdom 8239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-ac2 9620
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-oi 8704  df-card 9098  df-acn 9101  df-ac 9272
This theorem is referenced by:  mptct  9695  mpt2cti  30059  mptctf  30061  omssubadd  30960
  Copyright terms: Public domain W3C validator