Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnct | Structured version Visualization version GIF version |
Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
fnct | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 8833 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
2 | 1 | adantl 483 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐴 ∈ V) |
3 | fndm 6597 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | eleq1d 2822 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
5 | 4 | adantr 482 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
6 | 2, 5 | mpbird 257 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → dom 𝐹 ∈ V) |
7 | fnfun 6594 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
8 | 7 | adantr 482 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → Fun 𝐹) |
9 | funrnex 7873 | . . . . 5 ⊢ (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
10 | 6, 8, 9 | sylc 65 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ∈ V) |
11 | 2, 10 | xpexd 7672 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ∈ V) |
12 | simpl 484 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 Fn 𝐴) | |
13 | dffn3 6673 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
14 | 12, 13 | sylib 217 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹:𝐴⟶ran 𝐹) |
15 | fssxp 6688 | . . . 4 ⊢ (𝐹:𝐴⟶ran 𝐹 → 𝐹 ⊆ (𝐴 × ran 𝐹)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ⊆ (𝐴 × ran 𝐹)) |
17 | ssdomg 8870 | . . 3 ⊢ ((𝐴 × ran 𝐹) ∈ V → (𝐹 ⊆ (𝐴 × ran 𝐹) → 𝐹 ≼ (𝐴 × ran 𝐹))) | |
18 | 11, 16, 17 | sylc 65 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ (𝐴 × ran 𝐹)) |
19 | xpdom1g 8943 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹)) | |
20 | 10, 19 | sylancom 589 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹)) |
21 | omex 9509 | . . . . 5 ⊢ ω ∈ V | |
22 | fnrndomg 10402 | . . . . . . 7 ⊢ (𝐴 ∈ V → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) | |
23 | 2, 12, 22 | sylc 65 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ 𝐴) |
24 | domtr 8877 | . . . . . 6 ⊢ ((ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ ω) | |
25 | 23, 24 | sylancom 589 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → ran 𝐹 ≼ ω) |
26 | xpdom2g 8942 | . . . . 5 ⊢ ((ω ∈ V ∧ ran 𝐹 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω)) | |
27 | 21, 25, 26 | sylancr 588 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω)) |
28 | domtr 8877 | . . . 4 ⊢ (((𝐴 × ran 𝐹) ≼ (ω × ran 𝐹) ∧ (ω × ran 𝐹) ≼ (ω × ω)) → (𝐴 × ran 𝐹) ≼ (ω × ω)) | |
29 | 20, 27, 28 | syl2anc 585 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ω)) |
30 | xpomen 9881 | . . 3 ⊢ (ω × ω) ≈ ω | |
31 | domentr 8883 | . . 3 ⊢ (((𝐴 × ran 𝐹) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ran 𝐹) ≼ ω) | |
32 | 29, 30, 31 | sylancl 587 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ ω) |
33 | domtr 8877 | . 2 ⊢ ((𝐹 ≼ (𝐴 × ran 𝐹) ∧ (𝐴 × ran 𝐹) ≼ ω) → 𝐹 ≼ ω) | |
34 | 18, 32, 33 | syl2anc 585 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 Vcvv 3443 ⊆ wss 3905 class class class wbr 5100 × cxp 5625 dom cdm 5627 ran crn 5628 Fun wfun 6482 Fn wfn 6483 ⟶wf 6484 ωcom 7789 ≈ cen 8810 ≼ cdom 8811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-inf2 9507 ax-ac2 10329 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-se 5583 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-er 8578 df-map 8697 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-oi 9376 df-card 9805 df-acn 9808 df-ac 9982 |
This theorem is referenced by: mptct 10404 mpocti 31401 mptctf 31403 omssubadd 32631 |
Copyright terms: Public domain | W3C validator |