MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptct Structured version   Visualization version   GIF version

Theorem mptct 10436
Description: A countable mapping set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
mptct (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptct
StepHypRef Expression
1 funmpt 6524 . 2 Fun (𝑥𝐴𝐵)
2 ctex 8892 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
3 eqid 2733 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmptss 6193 . . . 4 dom (𝑥𝐴𝐵) ⊆ 𝐴
5 ssdomg 8929 . . . 4 (𝐴 ∈ V → (dom (𝑥𝐴𝐵) ⊆ 𝐴 → dom (𝑥𝐴𝐵) ≼ 𝐴))
62, 4, 5mpisyl 21 . . 3 (𝐴 ≼ ω → dom (𝑥𝐴𝐵) ≼ 𝐴)
7 domtr 8936 . . 3 ((dom (𝑥𝐴𝐵) ≼ 𝐴𝐴 ≼ ω) → dom (𝑥𝐴𝐵) ≼ ω)
86, 7mpancom 688 . 2 (𝐴 ≼ ω → dom (𝑥𝐴𝐵) ≼ ω)
9 funfn 6516 . . 3 (Fun (𝑥𝐴𝐵) ↔ (𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵))
10 fnct 10435 . . 3 (((𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ≼ ω) → (𝑥𝐴𝐵) ≼ ω)
119, 10sylanb 581 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ≼ ω) → (𝑥𝐴𝐵) ≼ ω)
121, 8, 11sylancr 587 1 (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Vcvv 3437  wss 3898   class class class wbr 5093  cmpt 5174  dom cdm 5619  Fun wfun 6480   Fn wfn 6481  ωcom 7802  cdom 8873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-ac2 10361
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9403  df-card 9839  df-acn 9842  df-ac 10014
This theorem is referenced by:  sigapildsys  34196  carsgclctunlem2  34353  pmeasadd  34359  smfpimcc  46931
  Copyright terms: Public domain W3C validator