![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunctb | Structured version Visualization version GIF version |
Description: The countable union of countable sets is countable (indexed union version of unictb 10570). (Contributed by Mario Carneiro, 18-Jan-2014.) |
Ref | Expression |
---|---|
iunctb | ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | simpl 484 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
3 | ctex 8959 | . . . . . . 7 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
4 | 3 | adantr 482 | . . . . . 6 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ∈ V) |
5 | ovex 7442 | . . . . . . 7 ⊢ (ω ↑m 𝐵) ∈ V | |
6 | 5 | rgenw 3066 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V |
7 | iunexg 7950 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) | |
8 | 4, 6, 7 | sylancl 587 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) |
9 | acncc 10435 | . . . . 5 ⊢ AC ω = V | |
10 | 8, 9 | eleqtrrdi 2845 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω) |
11 | acndom 10046 | . . . 4 ⊢ (𝐴 ≼ ω → (∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴)) | |
12 | 2, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴) |
13 | simpr 486 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
14 | omex 9638 | . . . . . 6 ⊢ ω ∈ V | |
15 | xpdom1g 9069 | . . . . . 6 ⊢ ((ω ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) | |
16 | 14, 2, 15 | sylancr 588 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) |
17 | xpomen 10010 | . . . . 5 ⊢ (ω × ω) ≈ ω | |
18 | domentr 9009 | . . . . 5 ⊢ (((𝐴 × ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ω) ≼ ω) | |
19 | 16, 17, 18 | sylancl 587 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ ω) |
20 | ctex 8959 | . . . . . . 7 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
21 | 20 | ralimi 3084 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≼ ω → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
22 | iunexg 7950 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
23 | 3, 21, 22 | syl2an 597 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
24 | omelon 9641 | . . . . . 6 ⊢ ω ∈ On | |
25 | onenon 9944 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ dom card) | |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ ω ∈ dom card |
27 | numacn 10044 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → (ω ∈ dom card → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
28 | 23, 26, 27 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
29 | acndom2 10049 | . . . 4 ⊢ ((𝐴 × ω) ≼ ω → (ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
30 | 19, 28, 29 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
31 | 1, 12, 13, 30 | iundomg 10536 | . 2 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω)) |
32 | domtr 9003 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω) ∧ (𝐴 × ω) ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
33 | 31, 19, 32 | syl2anc 585 | 1 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 {csn 4629 ∪ ciun 4998 class class class wbr 5149 × cxp 5675 dom cdm 5677 Oncon0 6365 (class class class)co 7409 ωcom 7855 ↑m cmap 8820 ≈ cen 8936 ≼ cdom 8937 cardccrd 9930 AC wacn 9933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cc 10430 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-oi 9505 df-card 9934 df-acn 9937 |
This theorem is referenced by: unictb 10570 iunctb2 36284 heiborlem3 36681 |
Copyright terms: Public domain | W3C validator |