Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunctb | Structured version Visualization version GIF version |
Description: The countable union of countable sets is countable (indexed union version of unictb 10262). (Contributed by Mario Carneiro, 18-Jan-2014.) |
Ref | Expression |
---|---|
iunctb | ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | simpl 482 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
3 | ctex 8708 | . . . . . . 7 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ∈ V) |
5 | ovex 7288 | . . . . . . 7 ⊢ (ω ↑m 𝐵) ∈ V | |
6 | 5 | rgenw 3075 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V |
7 | iunexg 7779 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) | |
8 | 4, 6, 7 | sylancl 585 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) |
9 | acncc 10127 | . . . . 5 ⊢ AC ω = V | |
10 | 8, 9 | eleqtrrdi 2850 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω) |
11 | acndom 9738 | . . . 4 ⊢ (𝐴 ≼ ω → (∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴)) | |
12 | 2, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴) |
13 | simpr 484 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
14 | omex 9331 | . . . . . 6 ⊢ ω ∈ V | |
15 | xpdom1g 8809 | . . . . . 6 ⊢ ((ω ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) | |
16 | 14, 2, 15 | sylancr 586 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) |
17 | xpomen 9702 | . . . . 5 ⊢ (ω × ω) ≈ ω | |
18 | domentr 8754 | . . . . 5 ⊢ (((𝐴 × ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ω) ≼ ω) | |
19 | 16, 17, 18 | sylancl 585 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ ω) |
20 | ctex 8708 | . . . . . . 7 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
21 | 20 | ralimi 3086 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≼ ω → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
22 | iunexg 7779 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
23 | 3, 21, 22 | syl2an 595 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
24 | omelon 9334 | . . . . . 6 ⊢ ω ∈ On | |
25 | onenon 9638 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ dom card) | |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ ω ∈ dom card |
27 | numacn 9736 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → (ω ∈ dom card → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
28 | 23, 26, 27 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
29 | acndom2 9741 | . . . 4 ⊢ ((𝐴 × ω) ≼ ω → (ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
30 | 19, 28, 29 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
31 | 1, 12, 13, 30 | iundomg 10228 | . 2 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω)) |
32 | domtr 8748 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω) ∧ (𝐴 × ω) ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
33 | 31, 19, 32 | syl2anc 583 | 1 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 {csn 4558 ∪ ciun 4921 class class class wbr 5070 × cxp 5578 dom cdm 5580 Oncon0 6251 (class class class)co 7255 ωcom 7687 ↑m cmap 8573 ≈ cen 8688 ≼ cdom 8689 cardccrd 9624 AC wacn 9627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-card 9628 df-acn 9631 |
This theorem is referenced by: unictb 10262 iunctb2 35501 heiborlem3 35898 |
Copyright terms: Public domain | W3C validator |