| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunctb | Structured version Visualization version GIF version | ||
| Description: The countable union of countable sets is countable (indexed union version of unictb 10473). (Contributed by Mario Carneiro, 18-Jan-2014.) |
| Ref | Expression |
|---|---|
| iunctb | ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
| 3 | ctex 8892 | . . . . . . 7 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ∈ V) |
| 5 | ovex 7385 | . . . . . . 7 ⊢ (ω ↑m 𝐵) ∈ V | |
| 6 | 5 | rgenw 3052 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V |
| 7 | iunexg 7901 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) | |
| 8 | 4, 6, 7 | sylancl 586 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) |
| 9 | acncc 10338 | . . . . 5 ⊢ AC ω = V | |
| 10 | 8, 9 | eleqtrrdi 2844 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω) |
| 11 | acndom 9949 | . . . 4 ⊢ (𝐴 ≼ ω → (∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴)) | |
| 12 | 2, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴) |
| 13 | simpr 484 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
| 14 | omex 9540 | . . . . . 6 ⊢ ω ∈ V | |
| 15 | xpdom1g 8994 | . . . . . 6 ⊢ ((ω ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) | |
| 16 | 14, 2, 15 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) |
| 17 | xpomen 9913 | . . . . 5 ⊢ (ω × ω) ≈ ω | |
| 18 | domentr 8942 | . . . . 5 ⊢ (((𝐴 × ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ω) ≼ ω) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ ω) |
| 20 | ctex 8892 | . . . . . . 7 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
| 21 | 20 | ralimi 3070 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≼ ω → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 22 | iunexg 7901 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 23 | 3, 21, 22 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 24 | omelon 9543 | . . . . . 6 ⊢ ω ∈ On | |
| 25 | onenon 9849 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ dom card) | |
| 26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ ω ∈ dom card |
| 27 | numacn 9947 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → (ω ∈ dom card → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 28 | 23, 26, 27 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
| 29 | acndom2 9952 | . . . 4 ⊢ ((𝐴 × ω) ≼ ω → (ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 30 | 19, 28, 29 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
| 31 | 1, 12, 13, 30 | iundomg 10439 | . 2 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω)) |
| 32 | domtr 8936 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω) ∧ (𝐴 × ω) ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
| 33 | 31, 19, 32 | syl2anc 584 | 1 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 {csn 4575 ∪ ciun 4941 class class class wbr 5093 × cxp 5617 dom cdm 5619 Oncon0 6311 (class class class)co 7352 ωcom 7802 ↑m cmap 8756 ≈ cen 8872 ≼ cdom 8873 cardccrd 9835 AC wacn 9838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-card 9839 df-acn 9842 |
| This theorem is referenced by: unictb 10473 iunctb2 37468 heiborlem3 37874 |
| Copyright terms: Public domain | W3C validator |