Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunctb | Structured version Visualization version GIF version |
Description: The countable union of countable sets is countable (indexed union version of unictb 10341). (Contributed by Mario Carneiro, 18-Jan-2014.) |
Ref | Expression |
---|---|
iunctb | ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | simpl 483 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
3 | ctex 8740 | . . . . . . 7 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ∈ V) |
5 | ovex 7300 | . . . . . . 7 ⊢ (ω ↑m 𝐵) ∈ V | |
6 | 5 | rgenw 3076 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V |
7 | iunexg 7795 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) | |
8 | 4, 6, 7 | sylancl 586 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) |
9 | acncc 10206 | . . . . 5 ⊢ AC ω = V | |
10 | 8, 9 | eleqtrrdi 2850 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω) |
11 | acndom 9817 | . . . 4 ⊢ (𝐴 ≼ ω → (∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴)) | |
12 | 2, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴) |
13 | simpr 485 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
14 | omex 9388 | . . . . . 6 ⊢ ω ∈ V | |
15 | xpdom1g 8843 | . . . . . 6 ⊢ ((ω ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) | |
16 | 14, 2, 15 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) |
17 | xpomen 9781 | . . . . 5 ⊢ (ω × ω) ≈ ω | |
18 | domentr 8786 | . . . . 5 ⊢ (((𝐴 × ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ω) ≼ ω) | |
19 | 16, 17, 18 | sylancl 586 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ ω) |
20 | ctex 8740 | . . . . . . 7 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
21 | 20 | ralimi 3087 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≼ ω → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
22 | iunexg 7795 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
23 | 3, 21, 22 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
24 | omelon 9391 | . . . . . 6 ⊢ ω ∈ On | |
25 | onenon 9717 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ dom card) | |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ ω ∈ dom card |
27 | numacn 9815 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → (ω ∈ dom card → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
28 | 23, 26, 27 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
29 | acndom2 9820 | . . . 4 ⊢ ((𝐴 × ω) ≼ ω → (ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
30 | 19, 28, 29 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
31 | 1, 12, 13, 30 | iundomg 10307 | . 2 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω)) |
32 | domtr 8780 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω) ∧ (𝐴 × ω) ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
33 | 31, 19, 32 | syl2anc 584 | 1 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 Vcvv 3429 {csn 4561 ∪ ciun 4924 class class class wbr 5073 × cxp 5582 dom cdm 5584 Oncon0 6259 (class class class)co 7267 ωcom 7702 ↑m cmap 8602 ≈ cen 8717 ≼ cdom 8718 cardccrd 9703 AC wacn 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cc 10201 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-oi 9256 df-card 9707 df-acn 9710 |
This theorem is referenced by: unictb 10341 iunctb2 35582 heiborlem3 35979 |
Copyright terms: Public domain | W3C validator |