MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunctb Structured version   Visualization version   GIF version

Theorem iunctb 10340
Description: The countable union of countable sets is countable (indexed union version of unictb 10341). (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iunctb ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝑥𝐴 𝐵 ≼ ω)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunctb
StepHypRef Expression
1 eqid 2738 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 ({𝑥} × 𝐵)
2 simpl 483 . . . 4 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝐴 ≼ ω)
3 ctex 8740 . . . . . . 7 (𝐴 ≼ ω → 𝐴 ∈ V)
43adantr 481 . . . . . 6 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝐴 ∈ V)
5 ovex 7300 . . . . . . 7 (ω ↑m 𝐵) ∈ V
65rgenw 3076 . . . . . 6 𝑥𝐴 (ω ↑m 𝐵) ∈ V
7 iunexg 7795 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (ω ↑m 𝐵) ∈ V) → 𝑥𝐴 (ω ↑m 𝐵) ∈ V)
84, 6, 7sylancl 586 . . . . 5 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝑥𝐴 (ω ↑m 𝐵) ∈ V)
9 acncc 10206 . . . . 5 AC ω = V
108, 9eleqtrrdi 2850 . . . 4 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝑥𝐴 (ω ↑m 𝐵) ∈ AC ω)
11 acndom 9817 . . . 4 (𝐴 ≼ ω → ( 𝑥𝐴 (ω ↑m 𝐵) ∈ AC ω → 𝑥𝐴 (ω ↑m 𝐵) ∈ AC 𝐴))
122, 10, 11sylc 65 . . 3 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝑥𝐴 (ω ↑m 𝐵) ∈ AC 𝐴)
13 simpr 485 . . 3 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → ∀𝑥𝐴 𝐵 ≼ ω)
14 omex 9388 . . . . . 6 ω ∈ V
15 xpdom1g 8843 . . . . . 6 ((ω ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ω) ≼ (ω × ω))
1614, 2, 15sylancr 587 . . . . 5 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ (ω × ω))
17 xpomen 9781 . . . . 5 (ω × ω) ≈ ω
18 domentr 8786 . . . . 5 (((𝐴 × ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ω) ≼ ω)
1916, 17, 18sylancl 586 . . . 4 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ ω)
20 ctex 8740 . . . . . . 7 (𝐵 ≼ ω → 𝐵 ∈ V)
2120ralimi 3087 . . . . . 6 (∀𝑥𝐴 𝐵 ≼ ω → ∀𝑥𝐴 𝐵 ∈ V)
22 iunexg 7795 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵 ∈ V) → 𝑥𝐴 𝐵 ∈ V)
233, 21, 22syl2an 596 . . . . 5 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝑥𝐴 𝐵 ∈ V)
24 omelon 9391 . . . . . 6 ω ∈ On
25 onenon 9717 . . . . . 6 (ω ∈ On → ω ∈ dom card)
2624, 25ax-mp 5 . . . . 5 ω ∈ dom card
27 numacn 9815 . . . . 5 ( 𝑥𝐴 𝐵 ∈ V → (ω ∈ dom card → ω ∈ AC 𝑥𝐴 𝐵))
2823, 26, 27mpisyl 21 . . . 4 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → ω ∈ AC 𝑥𝐴 𝐵)
29 acndom2 9820 . . . 4 ((𝐴 × ω) ≼ ω → (ω ∈ AC 𝑥𝐴 𝐵 → (𝐴 × ω) ∈ AC 𝑥𝐴 𝐵))
3019, 28, 29sylc 65 . . 3 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → (𝐴 × ω) ∈ AC 𝑥𝐴 𝐵)
311, 12, 13, 30iundomg 10307 . 2 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝑥𝐴 𝐵 ≼ (𝐴 × ω))
32 domtr 8780 . 2 (( 𝑥𝐴 𝐵 ≼ (𝐴 × ω) ∧ (𝐴 × ω) ≼ ω) → 𝑥𝐴 𝐵 ≼ ω)
3331, 19, 32syl2anc 584 1 ((𝐴 ≼ ω ∧ ∀𝑥𝐴 𝐵 ≼ ω) → 𝑥𝐴 𝐵 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  Vcvv 3429  {csn 4561   ciun 4924   class class class wbr 5073   × cxp 5582  dom cdm 5584  Oncon0 6259  (class class class)co 7267  ωcom 7702  m cmap 8602  cen 8717  cdom 8718  cardccrd 9703  AC wacn 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cc 10201
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-oi 9256  df-card 9707  df-acn 9710
This theorem is referenced by:  unictb  10341  iunctb2  35582  heiborlem3  35979
  Copyright terms: Public domain W3C validator