Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunctb | Structured version Visualization version GIF version |
Description: The countable union of countable sets is countable (indexed union version of unictb 10331). (Contributed by Mario Carneiro, 18-Jan-2014.) |
Ref | Expression |
---|---|
iunctb | ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | simpl 483 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
3 | ctex 8753 | . . . . . . 7 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → 𝐴 ∈ V) |
5 | ovex 7308 | . . . . . . 7 ⊢ (ω ↑m 𝐵) ∈ V | |
6 | 5 | rgenw 3076 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V |
7 | iunexg 7806 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) | |
8 | 4, 6, 7 | sylancl 586 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ V) |
9 | acncc 10196 | . . . . 5 ⊢ AC ω = V | |
10 | 8, 9 | eleqtrrdi 2850 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω) |
11 | acndom 9807 | . . . 4 ⊢ (𝐴 ≼ ω → (∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC ω → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴)) | |
12 | 2, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 (ω ↑m 𝐵) ∈ AC 𝐴) |
13 | simpr 485 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
14 | omex 9401 | . . . . . 6 ⊢ ω ∈ V | |
15 | xpdom1g 8856 | . . . . . 6 ⊢ ((ω ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) | |
16 | 14, 2, 15 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ (ω × ω)) |
17 | xpomen 9771 | . . . . 5 ⊢ (ω × ω) ≈ ω | |
18 | domentr 8799 | . . . . 5 ⊢ (((𝐴 × ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ω) ≼ ω) | |
19 | 16, 17, 18 | sylancl 586 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ≼ ω) |
20 | ctex 8753 | . . . . . . 7 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
21 | 20 | ralimi 3087 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≼ ω → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
22 | iunexg 7806 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
23 | 3, 21, 22 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
24 | omelon 9404 | . . . . . 6 ⊢ ω ∈ On | |
25 | onenon 9707 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ dom card) | |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ ω ∈ dom card |
27 | numacn 9805 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → (ω ∈ dom card → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
28 | 23, 26, 27 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
29 | acndom2 9810 | . . . 4 ⊢ ((𝐴 × ω) ≼ ω → (ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
30 | 19, 28, 29 | sylc 65 | . . 3 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → (𝐴 × ω) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
31 | 1, 12, 13, 30 | iundomg 10297 | . 2 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω)) |
32 | domtr 8793 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × ω) ∧ (𝐴 × ω) ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | |
33 | 31, 19, 32 | syl2anc 584 | 1 ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 {csn 4561 ∪ ciun 4924 class class class wbr 5074 × cxp 5587 dom cdm 5589 Oncon0 6266 (class class class)co 7275 ωcom 7712 ↑m cmap 8615 ≈ cen 8730 ≼ cdom 8731 cardccrd 9693 AC wacn 9696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-card 9697 df-acn 9700 |
This theorem is referenced by: unictb 10331 iunctb2 35574 heiborlem3 35971 |
Copyright terms: Public domain | W3C validator |