![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpct | Structured version Visualization version GIF version |
Description: The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
xpct | ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 8955 | . . . . 5 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ∈ V) |
3 | simpl 483 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
4 | xpdom1g 9065 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × 𝐵)) | |
5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × 𝐵)) |
6 | omex 9634 | . . . . 5 ⊢ ω ∈ V | |
7 | 6 | xpdom2 9063 | . . . 4 ⊢ (𝐵 ≼ ω → (ω × 𝐵) ≼ (ω × ω)) |
8 | 7 | adantl 482 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω × 𝐵) ≼ (ω × ω)) |
9 | domtr 8999 | . . 3 ⊢ (((𝐴 × 𝐵) ≼ (ω × 𝐵) ∧ (ω × 𝐵) ≼ (ω × ω)) → (𝐴 × 𝐵) ≼ (ω × ω)) | |
10 | 5, 8, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × ω)) |
11 | xpomen 10006 | . 2 ⊢ (ω × ω) ≈ ω | |
12 | domentr 9005 | . 2 ⊢ (((𝐴 × 𝐵) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × 𝐵) ≼ ω) | |
13 | 10, 11, 12 | sylancl 586 | 1 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 class class class wbr 5147 × cxp 5673 ωcom 7851 ≈ cen 8932 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-oi 9501 df-card 9930 |
This theorem is referenced by: tx1stc 23145 mpocti 31927 mpct 43885 opnvonmbllem2 45335 smflimlem6 45478 smfpimbor1lem1 45500 |
Copyright terms: Public domain | W3C validator |