MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpct Structured version   Visualization version   GIF version

Theorem xpct 10039
Description: The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Assertion
Ref Expression
xpct ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω)

Proof of Theorem xpct
StepHypRef Expression
1 ctex 8983 . . . . 5 (𝐵 ≼ ω → 𝐵 ∈ V)
21adantl 481 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ∈ V)
3 simpl 482 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω)
4 xpdom1g 9093 . . . 4 ((𝐵 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × 𝐵))
52, 3, 4syl2anc 583 . . 3 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × 𝐵))
6 omex 9666 . . . . 5 ω ∈ V
76xpdom2 9091 . . . 4 (𝐵 ≼ ω → (ω × 𝐵) ≼ (ω × ω))
87adantl 481 . . 3 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω × 𝐵) ≼ (ω × ω))
9 domtr 9027 . . 3 (((𝐴 × 𝐵) ≼ (ω × 𝐵) ∧ (ω × 𝐵) ≼ (ω × ω)) → (𝐴 × 𝐵) ≼ (ω × ω))
105, 8, 9syl2anc 583 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × ω))
11 xpomen 10038 . 2 (ω × ω) ≈ ω
12 domentr 9033 . 2 (((𝐴 × 𝐵) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × 𝐵) ≼ ω)
1310, 11, 12sylancl 585 1 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  Vcvv 3471   class class class wbr 5148   × cxp 5676  ωcom 7870  cen 8960  cdom 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9664
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-oi 9533  df-card 9962
This theorem is referenced by:  tx1stc  23553  mpocti  32497  mpct  44574  opnvonmbllem2  46021  smflimlem6  46164  smfpimbor1lem1  46186
  Copyright terms: Public domain W3C validator