| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7402 |
. . 3
⊢ (𝑥 = ∅ → (𝐴 ↑m 𝑥) = (𝐴 ↑m
∅)) |
| 2 | 1 | breq1d 5125 |
. 2
⊢ (𝑥 = ∅ → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m ∅)
≼ ω)) |
| 3 | | oveq2 7402 |
. . 3
⊢ (𝑥 = 𝑦 → (𝐴 ↑m 𝑥) = (𝐴 ↑m 𝑦)) |
| 4 | 3 | breq1d 5125 |
. 2
⊢ (𝑥 = 𝑦 → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m 𝑦) ≼ ω)) |
| 5 | | oveq2 7402 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴 ↑m 𝑥) = (𝐴 ↑m (𝑦 ∪ {𝑧}))) |
| 6 | 5 | breq1d 5125 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω)) |
| 7 | | oveq2 7402 |
. . 3
⊢ (𝑥 = 𝐵 → (𝐴 ↑m 𝑥) = (𝐴 ↑m 𝐵)) |
| 8 | 7 | breq1d 5125 |
. 2
⊢ (𝑥 = 𝐵 → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m 𝐵) ≼ ω)) |
| 9 | | mpct.a |
. . . . 5
⊢ (𝜑 → 𝐴 ≼ ω) |
| 10 | | ctex 8941 |
. . . . 5
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| 11 | 9, 10 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
| 12 | | mapdm0 8819 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ↑m ∅) =
{∅}) |
| 13 | 11, 12 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ↑m ∅) =
{∅}) |
| 14 | | snfi 9020 |
. . . . 5
⊢ {∅}
∈ Fin |
| 15 | | fict 9624 |
. . . . 5
⊢
({∅} ∈ Fin → {∅} ≼ ω) |
| 16 | 14, 15 | ax-mp 5 |
. . . 4
⊢ {∅}
≼ ω |
| 17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → {∅} ≼
ω) |
| 18 | 13, 17 | eqbrtrd 5137 |
. 2
⊢ (𝜑 → (𝐴 ↑m ∅) ≼
ω) |
| 19 | | vex 3459 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 20 | 19 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → 𝑦 ∈ V) |
| 21 | | vsnex 5397 |
. . . . . 6
⊢ {𝑧} ∈ V |
| 22 | 21 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → {𝑧} ∈ V) |
| 23 | 11 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → 𝐴 ∈ V) |
| 24 | | eldifn 4103 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐵 ∖ 𝑦) → ¬ 𝑧 ∈ 𝑦) |
| 25 | | disjsn 4683 |
. . . . . . . 8
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 26 | 24, 25 | sylibr 234 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐵 ∖ 𝑦) → (𝑦 ∩ {𝑧}) = ∅) |
| 27 | 26 | adantl 481 |
. . . . . 6
⊢ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅) |
| 28 | 27 | ad2antlr 727 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝑦 ∩ {𝑧}) = ∅) |
| 29 | | mapunen 9123 |
. . . . 5
⊢ (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) |
| 30 | 20, 22, 23, 28, 29 | syl31anc 1375 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) |
| 31 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m 𝑦) ≼ ω) |
| 32 | | vex 3459 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 33 | 32 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑧 ∈ V) |
| 34 | 11, 33 | mapsnend 9013 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑m {𝑧}) ≈ 𝐴) |
| 35 | | endomtr 8989 |
. . . . . . 7
⊢ (((𝐴 ↑m {𝑧}) ≈ 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 ↑m {𝑧}) ≼ ω) |
| 36 | 34, 9, 35 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐴 ↑m {𝑧}) ≼ ω) |
| 37 | 36 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m {𝑧}) ≼ ω) |
| 38 | | xpct 9987 |
. . . . 5
⊢ (((𝐴 ↑m 𝑦) ≼ ω ∧ (𝐴 ↑m {𝑧}) ≼ ω) →
((𝐴 ↑m
𝑦) × (𝐴 ↑m {𝑧})) ≼
ω) |
| 39 | 31, 37, 38 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ≼ ω) |
| 40 | | endomtr 8989 |
. . . 4
⊢ (((𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ∧ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω) |
| 41 | 30, 39, 40 | syl2anc 584 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω) |
| 42 | 41 | ex 412 |
. 2
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → ((𝐴 ↑m 𝑦) ≼ ω → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω)) |
| 43 | | mpct.b |
. 2
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 44 | 2, 4, 6, 8, 18, 42, 43 | findcard2d 9143 |
1
⊢ (𝜑 → (𝐴 ↑m 𝐵) ≼ ω) |