Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpct Structured version   Visualization version   GIF version

Theorem mpct 45167
Description: The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mpct.a (𝜑𝐴 ≼ ω)
mpct.b (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
mpct (𝜑 → (𝐴m 𝐵) ≼ ω)

Proof of Theorem mpct
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7402 . . 3 (𝑥 = ∅ → (𝐴m 𝑥) = (𝐴m ∅))
21breq1d 5125 . 2 (𝑥 = ∅ → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m ∅) ≼ ω))
3 oveq2 7402 . . 3 (𝑥 = 𝑦 → (𝐴m 𝑥) = (𝐴m 𝑦))
43breq1d 5125 . 2 (𝑥 = 𝑦 → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m 𝑦) ≼ ω))
5 oveq2 7402 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴m 𝑥) = (𝐴m (𝑦 ∪ {𝑧})))
65breq1d 5125 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m (𝑦 ∪ {𝑧})) ≼ ω))
7 oveq2 7402 . . 3 (𝑥 = 𝐵 → (𝐴m 𝑥) = (𝐴m 𝐵))
87breq1d 5125 . 2 (𝑥 = 𝐵 → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m 𝐵) ≼ ω))
9 mpct.a . . . . 5 (𝜑𝐴 ≼ ω)
10 ctex 8941 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
119, 10syl 17 . . . 4 (𝜑𝐴 ∈ V)
12 mapdm0 8819 . . . 4 (𝐴 ∈ V → (𝐴m ∅) = {∅})
1311, 12syl 17 . . 3 (𝜑 → (𝐴m ∅) = {∅})
14 snfi 9020 . . . . 5 {∅} ∈ Fin
15 fict 9624 . . . . 5 ({∅} ∈ Fin → {∅} ≼ ω)
1614, 15ax-mp 5 . . . 4 {∅} ≼ ω
1716a1i 11 . . 3 (𝜑 → {∅} ≼ ω)
1813, 17eqbrtrd 5137 . 2 (𝜑 → (𝐴m ∅) ≼ ω)
19 vex 3459 . . . . . 6 𝑦 ∈ V
2019a1i 11 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → 𝑦 ∈ V)
21 vsnex 5397 . . . . . 6 {𝑧} ∈ V
2221a1i 11 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → {𝑧} ∈ V)
2311ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → 𝐴 ∈ V)
24 eldifn 4103 . . . . . . . 8 (𝑧 ∈ (𝐵𝑦) → ¬ 𝑧𝑦)
25 disjsn 4683 . . . . . . . 8 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
2624, 25sylibr 234 . . . . . . 7 (𝑧 ∈ (𝐵𝑦) → (𝑦 ∩ {𝑧}) = ∅)
2726adantl 481 . . . . . 6 ((𝑦𝐵𝑧 ∈ (𝐵𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
2827ad2antlr 727 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝑦 ∩ {𝑧}) = ∅)
29 mapunen 9123 . . . . 5 (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
3020, 22, 23, 28, 29syl31anc 1375 . . . 4 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
31 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m 𝑦) ≼ ω)
32 vex 3459 . . . . . . . . 9 𝑧 ∈ V
3332a1i 11 . . . . . . . 8 (𝜑𝑧 ∈ V)
3411, 33mapsnend 9013 . . . . . . 7 (𝜑 → (𝐴m {𝑧}) ≈ 𝐴)
35 endomtr 8989 . . . . . . 7 (((𝐴m {𝑧}) ≈ 𝐴𝐴 ≼ ω) → (𝐴m {𝑧}) ≼ ω)
3634, 9, 35syl2anc 584 . . . . . 6 (𝜑 → (𝐴m {𝑧}) ≼ ω)
3736ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m {𝑧}) ≼ ω)
38 xpct 9987 . . . . 5 (((𝐴m 𝑦) ≼ ω ∧ (𝐴m {𝑧}) ≼ ω) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω)
3931, 37, 38syl2anc 584 . . . 4 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω)
40 endomtr 8989 . . . 4 (((𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})) ∧ ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω)
4130, 39, 40syl2anc 584 . . 3 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω)
4241ex 412 . 2 ((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) → ((𝐴m 𝑦) ≼ ω → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω))
43 mpct.b . 2 (𝜑𝐵 ∈ Fin)
442, 4, 6, 8, 18, 42, 43findcard2d 9143 1 (𝜑 → (𝐴m 𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cdif 3919  cun 3920  cin 3921  wss 3922  c0 4304  {csn 4597   class class class wbr 5115   × cxp 5644  (class class class)co 7394  ωcom 7850  m cmap 8803  cen 8919  cdom 8920  Fincfn 8922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-oi 9481  df-card 9910
This theorem is referenced by:  opnvonmbllem2  46604  smfmullem4  46765
  Copyright terms: Public domain W3C validator