Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . 3
⊢ (𝑥 = ∅ → (𝐴 ↑m 𝑥) = (𝐴 ↑m
∅)) |
2 | 1 | breq1d 5080 |
. 2
⊢ (𝑥 = ∅ → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m ∅)
≼ ω)) |
3 | | oveq2 7263 |
. . 3
⊢ (𝑥 = 𝑦 → (𝐴 ↑m 𝑥) = (𝐴 ↑m 𝑦)) |
4 | 3 | breq1d 5080 |
. 2
⊢ (𝑥 = 𝑦 → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m 𝑦) ≼ ω)) |
5 | | oveq2 7263 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴 ↑m 𝑥) = (𝐴 ↑m (𝑦 ∪ {𝑧}))) |
6 | 5 | breq1d 5080 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω)) |
7 | | oveq2 7263 |
. . 3
⊢ (𝑥 = 𝐵 → (𝐴 ↑m 𝑥) = (𝐴 ↑m 𝐵)) |
8 | 7 | breq1d 5080 |
. 2
⊢ (𝑥 = 𝐵 → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m 𝐵) ≼ ω)) |
9 | | mpct.a |
. . . . 5
⊢ (𝜑 → 𝐴 ≼ ω) |
10 | | ctex 8708 |
. . . . 5
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
11 | 9, 10 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
12 | | mapdm0 8588 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ↑m ∅) =
{∅}) |
13 | 11, 12 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ↑m ∅) =
{∅}) |
14 | | snfi 8788 |
. . . . 5
⊢ {∅}
∈ Fin |
15 | | fict 9341 |
. . . . 5
⊢
({∅} ∈ Fin → {∅} ≼ ω) |
16 | 14, 15 | ax-mp 5 |
. . . 4
⊢ {∅}
≼ ω |
17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → {∅} ≼
ω) |
18 | 13, 17 | eqbrtrd 5092 |
. 2
⊢ (𝜑 → (𝐴 ↑m ∅) ≼
ω) |
19 | | vex 3426 |
. . . . . 6
⊢ 𝑦 ∈ V |
20 | 19 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → 𝑦 ∈ V) |
21 | | snex 5349 |
. . . . . 6
⊢ {𝑧} ∈ V |
22 | 21 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → {𝑧} ∈ V) |
23 | 11 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → 𝐴 ∈ V) |
24 | | eldifn 4058 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐵 ∖ 𝑦) → ¬ 𝑧 ∈ 𝑦) |
25 | | disjsn 4644 |
. . . . . . . 8
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
26 | 24, 25 | sylibr 233 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐵 ∖ 𝑦) → (𝑦 ∩ {𝑧}) = ∅) |
27 | 26 | adantl 481 |
. . . . . 6
⊢ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅) |
28 | 27 | ad2antlr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝑦 ∩ {𝑧}) = ∅) |
29 | | mapunen 8882 |
. . . . 5
⊢ (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) |
30 | 20, 22, 23, 28, 29 | syl31anc 1371 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) |
31 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m 𝑦) ≼ ω) |
32 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
33 | 32 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑧 ∈ V) |
34 | 11, 33 | mapsnend 8780 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑m {𝑧}) ≈ 𝐴) |
35 | | endomtr 8753 |
. . . . . . 7
⊢ (((𝐴 ↑m {𝑧}) ≈ 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 ↑m {𝑧}) ≼ ω) |
36 | 34, 9, 35 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐴 ↑m {𝑧}) ≼ ω) |
37 | 36 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m {𝑧}) ≼ ω) |
38 | | xpct 9703 |
. . . . 5
⊢ (((𝐴 ↑m 𝑦) ≼ ω ∧ (𝐴 ↑m {𝑧}) ≼ ω) →
((𝐴 ↑m
𝑦) × (𝐴 ↑m {𝑧})) ≼
ω) |
39 | 31, 37, 38 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ≼ ω) |
40 | | endomtr 8753 |
. . . 4
⊢ (((𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ∧ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω) |
41 | 30, 39, 40 | syl2anc 583 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω) |
42 | 41 | ex 412 |
. 2
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → ((𝐴 ↑m 𝑦) ≼ ω → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω)) |
43 | | mpct.b |
. 2
⊢ (𝜑 → 𝐵 ∈ Fin) |
44 | 2, 4, 6, 8, 18, 42, 43 | findcard2d 8911 |
1
⊢ (𝜑 → (𝐴 ↑m 𝐵) ≼ ω) |