| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7440 | . . 3
⊢ (𝑥 = ∅ → (𝐴 ↑m 𝑥) = (𝐴 ↑m
∅)) | 
| 2 | 1 | breq1d 5152 | . 2
⊢ (𝑥 = ∅ → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m ∅)
≼ ω)) | 
| 3 |  | oveq2 7440 | . . 3
⊢ (𝑥 = 𝑦 → (𝐴 ↑m 𝑥) = (𝐴 ↑m 𝑦)) | 
| 4 | 3 | breq1d 5152 | . 2
⊢ (𝑥 = 𝑦 → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m 𝑦) ≼ ω)) | 
| 5 |  | oveq2 7440 | . . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴 ↑m 𝑥) = (𝐴 ↑m (𝑦 ∪ {𝑧}))) | 
| 6 | 5 | breq1d 5152 | . 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω)) | 
| 7 |  | oveq2 7440 | . . 3
⊢ (𝑥 = 𝐵 → (𝐴 ↑m 𝑥) = (𝐴 ↑m 𝐵)) | 
| 8 | 7 | breq1d 5152 | . 2
⊢ (𝑥 = 𝐵 → ((𝐴 ↑m 𝑥) ≼ ω ↔ (𝐴 ↑m 𝐵) ≼ ω)) | 
| 9 |  | mpct.a | . . . . 5
⊢ (𝜑 → 𝐴 ≼ ω) | 
| 10 |  | ctex 9005 | . . . . 5
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | 
| 11 | 9, 10 | syl 17 | . . . 4
⊢ (𝜑 → 𝐴 ∈ V) | 
| 12 |  | mapdm0 8883 | . . . 4
⊢ (𝐴 ∈ V → (𝐴 ↑m ∅) =
{∅}) | 
| 13 | 11, 12 | syl 17 | . . 3
⊢ (𝜑 → (𝐴 ↑m ∅) =
{∅}) | 
| 14 |  | snfi 9084 | . . . . 5
⊢ {∅}
∈ Fin | 
| 15 |  | fict 9694 | . . . . 5
⊢
({∅} ∈ Fin → {∅} ≼ ω) | 
| 16 | 14, 15 | ax-mp 5 | . . . 4
⊢ {∅}
≼ ω | 
| 17 | 16 | a1i 11 | . . 3
⊢ (𝜑 → {∅} ≼
ω) | 
| 18 | 13, 17 | eqbrtrd 5164 | . 2
⊢ (𝜑 → (𝐴 ↑m ∅) ≼
ω) | 
| 19 |  | vex 3483 | . . . . . 6
⊢ 𝑦 ∈ V | 
| 20 | 19 | a1i 11 | . . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → 𝑦 ∈ V) | 
| 21 |  | vsnex 5433 | . . . . . 6
⊢ {𝑧} ∈ V | 
| 22 | 21 | a1i 11 | . . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → {𝑧} ∈ V) | 
| 23 | 11 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → 𝐴 ∈ V) | 
| 24 |  | eldifn 4131 | . . . . . . . 8
⊢ (𝑧 ∈ (𝐵 ∖ 𝑦) → ¬ 𝑧 ∈ 𝑦) | 
| 25 |  | disjsn 4710 | . . . . . . . 8
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) | 
| 26 | 24, 25 | sylibr 234 | . . . . . . 7
⊢ (𝑧 ∈ (𝐵 ∖ 𝑦) → (𝑦 ∩ {𝑧}) = ∅) | 
| 27 | 26 | adantl 481 | . . . . . 6
⊢ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅) | 
| 28 | 27 | ad2antlr 727 | . . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝑦 ∩ {𝑧}) = ∅) | 
| 29 |  | mapunen 9187 | . . . . 5
⊢ (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) | 
| 30 | 20, 22, 23, 28, 29 | syl31anc 1374 | . . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) | 
| 31 |  | simpr 484 | . . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m 𝑦) ≼ ω) | 
| 32 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑧 ∈ V | 
| 33 | 32 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 𝑧 ∈ V) | 
| 34 | 11, 33 | mapsnend 9077 | . . . . . . 7
⊢ (𝜑 → (𝐴 ↑m {𝑧}) ≈ 𝐴) | 
| 35 |  | endomtr 9053 | . . . . . . 7
⊢ (((𝐴 ↑m {𝑧}) ≈ 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 ↑m {𝑧}) ≼ ω) | 
| 36 | 34, 9, 35 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (𝐴 ↑m {𝑧}) ≼ ω) | 
| 37 | 36 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m {𝑧}) ≼ ω) | 
| 38 |  | xpct 10057 | . . . . 5
⊢ (((𝐴 ↑m 𝑦) ≼ ω ∧ (𝐴 ↑m {𝑧}) ≼ ω) →
((𝐴 ↑m
𝑦) × (𝐴 ↑m {𝑧})) ≼
ω) | 
| 39 | 31, 37, 38 | syl2anc 584 | . . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ≼ ω) | 
| 40 |  | endomtr 9053 | . . . 4
⊢ (((𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ∧ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω) | 
| 41 | 30, 39, 40 | syl2anc 584 | . . 3
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ (𝐴 ↑m 𝑦) ≼ ω) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω) | 
| 42 | 41 | ex 412 | . 2
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → ((𝐴 ↑m 𝑦) ≼ ω → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≼ ω)) | 
| 43 |  | mpct.b | . 2
⊢ (𝜑 → 𝐵 ∈ Fin) | 
| 44 | 2, 4, 6, 8, 18, 42, 43 | findcard2d 9207 | 1
⊢ (𝜑 → (𝐴 ↑m 𝐵) ≼ ω) |