Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpct Structured version   Visualization version   GIF version

Theorem mpct 45179
Description: The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mpct.a (𝜑𝐴 ≼ ω)
mpct.b (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
mpct (𝜑 → (𝐴m 𝐵) ≼ ω)

Proof of Theorem mpct
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . 3 (𝑥 = ∅ → (𝐴m 𝑥) = (𝐴m ∅))
21breq1d 5105 . 2 (𝑥 = ∅ → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m ∅) ≼ ω))
3 oveq2 7361 . . 3 (𝑥 = 𝑦 → (𝐴m 𝑥) = (𝐴m 𝑦))
43breq1d 5105 . 2 (𝑥 = 𝑦 → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m 𝑦) ≼ ω))
5 oveq2 7361 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴m 𝑥) = (𝐴m (𝑦 ∪ {𝑧})))
65breq1d 5105 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m (𝑦 ∪ {𝑧})) ≼ ω))
7 oveq2 7361 . . 3 (𝑥 = 𝐵 → (𝐴m 𝑥) = (𝐴m 𝐵))
87breq1d 5105 . 2 (𝑥 = 𝐵 → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m 𝐵) ≼ ω))
9 mpct.a . . . . 5 (𝜑𝐴 ≼ ω)
10 ctex 8896 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
119, 10syl 17 . . . 4 (𝜑𝐴 ∈ V)
12 mapdm0 8776 . . . 4 (𝐴 ∈ V → (𝐴m ∅) = {∅})
1311, 12syl 17 . . 3 (𝜑 → (𝐴m ∅) = {∅})
14 snfi 8975 . . . . 5 {∅} ∈ Fin
15 fict 9568 . . . . 5 ({∅} ∈ Fin → {∅} ≼ ω)
1614, 15ax-mp 5 . . . 4 {∅} ≼ ω
1716a1i 11 . . 3 (𝜑 → {∅} ≼ ω)
1813, 17eqbrtrd 5117 . 2 (𝜑 → (𝐴m ∅) ≼ ω)
19 vex 3442 . . . . . 6 𝑦 ∈ V
2019a1i 11 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → 𝑦 ∈ V)
21 vsnex 5376 . . . . . 6 {𝑧} ∈ V
2221a1i 11 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → {𝑧} ∈ V)
2311ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → 𝐴 ∈ V)
24 eldifn 4085 . . . . . . . 8 (𝑧 ∈ (𝐵𝑦) → ¬ 𝑧𝑦)
25 disjsn 4665 . . . . . . . 8 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
2624, 25sylibr 234 . . . . . . 7 (𝑧 ∈ (𝐵𝑦) → (𝑦 ∩ {𝑧}) = ∅)
2726adantl 481 . . . . . 6 ((𝑦𝐵𝑧 ∈ (𝐵𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
2827ad2antlr 727 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝑦 ∩ {𝑧}) = ∅)
29 mapunen 9070 . . . . 5 (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
3020, 22, 23, 28, 29syl31anc 1375 . . . 4 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
31 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m 𝑦) ≼ ω)
32 vex 3442 . . . . . . . . 9 𝑧 ∈ V
3332a1i 11 . . . . . . . 8 (𝜑𝑧 ∈ V)
3411, 33mapsnend 8968 . . . . . . 7 (𝜑 → (𝐴m {𝑧}) ≈ 𝐴)
35 endomtr 8944 . . . . . . 7 (((𝐴m {𝑧}) ≈ 𝐴𝐴 ≼ ω) → (𝐴m {𝑧}) ≼ ω)
3634, 9, 35syl2anc 584 . . . . . 6 (𝜑 → (𝐴m {𝑧}) ≼ ω)
3736ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m {𝑧}) ≼ ω)
38 xpct 9929 . . . . 5 (((𝐴m 𝑦) ≼ ω ∧ (𝐴m {𝑧}) ≼ ω) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω)
3931, 37, 38syl2anc 584 . . . 4 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω)
40 endomtr 8944 . . . 4 (((𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})) ∧ ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω)
4130, 39, 40syl2anc 584 . . 3 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω)
4241ex 412 . 2 ((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) → ((𝐴m 𝑦) ≼ ω → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω))
43 mpct.b . 2 (𝜑𝐵 ∈ Fin)
442, 4, 6, 8, 18, 42, 43findcard2d 9090 1 (𝜑 → (𝐴m 𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   class class class wbr 5095   × cxp 5621  (class class class)co 7353  ωcom 7806  m cmap 8760  cen 8876  cdom 8877  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-card 9854
This theorem is referenced by:  opnvonmbllem2  46615  smfmullem4  46776
  Copyright terms: Public domain W3C validator