Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpct Structured version   Visualization version   GIF version

Theorem mpct 45108
Description: The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mpct.a (𝜑𝐴 ≼ ω)
mpct.b (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
mpct (𝜑 → (𝐴m 𝐵) ≼ ω)

Proof of Theorem mpct
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . 3 (𝑥 = ∅ → (𝐴m 𝑥) = (𝐴m ∅))
21breq1d 5176 . 2 (𝑥 = ∅ → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m ∅) ≼ ω))
3 oveq2 7456 . . 3 (𝑥 = 𝑦 → (𝐴m 𝑥) = (𝐴m 𝑦))
43breq1d 5176 . 2 (𝑥 = 𝑦 → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m 𝑦) ≼ ω))
5 oveq2 7456 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴m 𝑥) = (𝐴m (𝑦 ∪ {𝑧})))
65breq1d 5176 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m (𝑦 ∪ {𝑧})) ≼ ω))
7 oveq2 7456 . . 3 (𝑥 = 𝐵 → (𝐴m 𝑥) = (𝐴m 𝐵))
87breq1d 5176 . 2 (𝑥 = 𝐵 → ((𝐴m 𝑥) ≼ ω ↔ (𝐴m 𝐵) ≼ ω))
9 mpct.a . . . . 5 (𝜑𝐴 ≼ ω)
10 ctex 9023 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
119, 10syl 17 . . . 4 (𝜑𝐴 ∈ V)
12 mapdm0 8900 . . . 4 (𝐴 ∈ V → (𝐴m ∅) = {∅})
1311, 12syl 17 . . 3 (𝜑 → (𝐴m ∅) = {∅})
14 snfi 9109 . . . . 5 {∅} ∈ Fin
15 fict 9722 . . . . 5 ({∅} ∈ Fin → {∅} ≼ ω)
1614, 15ax-mp 5 . . . 4 {∅} ≼ ω
1716a1i 11 . . 3 (𝜑 → {∅} ≼ ω)
1813, 17eqbrtrd 5188 . 2 (𝜑 → (𝐴m ∅) ≼ ω)
19 vex 3492 . . . . . 6 𝑦 ∈ V
2019a1i 11 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → 𝑦 ∈ V)
21 vsnex 5449 . . . . . 6 {𝑧} ∈ V
2221a1i 11 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → {𝑧} ∈ V)
2311ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → 𝐴 ∈ V)
24 eldifn 4155 . . . . . . . 8 (𝑧 ∈ (𝐵𝑦) → ¬ 𝑧𝑦)
25 disjsn 4736 . . . . . . . 8 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
2624, 25sylibr 234 . . . . . . 7 (𝑧 ∈ (𝐵𝑦) → (𝑦 ∩ {𝑧}) = ∅)
2726adantl 481 . . . . . 6 ((𝑦𝐵𝑧 ∈ (𝐵𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
2827ad2antlr 726 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝑦 ∩ {𝑧}) = ∅)
29 mapunen 9212 . . . . 5 (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
3020, 22, 23, 28, 29syl31anc 1373 . . . 4 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
31 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m 𝑦) ≼ ω)
32 vex 3492 . . . . . . . . 9 𝑧 ∈ V
3332a1i 11 . . . . . . . 8 (𝜑𝑧 ∈ V)
3411, 33mapsnend 9101 . . . . . . 7 (𝜑 → (𝐴m {𝑧}) ≈ 𝐴)
35 endomtr 9072 . . . . . . 7 (((𝐴m {𝑧}) ≈ 𝐴𝐴 ≼ ω) → (𝐴m {𝑧}) ≼ ω)
3634, 9, 35syl2anc 583 . . . . . 6 (𝜑 → (𝐴m {𝑧}) ≼ ω)
3736ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m {𝑧}) ≼ ω)
38 xpct 10085 . . . . 5 (((𝐴m 𝑦) ≼ ω ∧ (𝐴m {𝑧}) ≼ ω) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω)
3931, 37, 38syl2anc 583 . . . 4 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω)
40 endomtr 9072 . . . 4 (((𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})) ∧ ((𝐴m 𝑦) × (𝐴m {𝑧})) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω)
4130, 39, 40syl2anc 583 . . 3 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴m 𝑦) ≼ ω) → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω)
4241ex 412 . 2 ((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) → ((𝐴m 𝑦) ≼ ω → (𝐴m (𝑦 ∪ {𝑧})) ≼ ω))
43 mpct.b . 2 (𝜑𝐵 ∈ Fin)
442, 4, 6, 8, 18, 42, 43findcard2d 9232 1 (𝜑 → (𝐴m 𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166   × cxp 5698  (class class class)co 7448  ωcom 7903  m cmap 8884  cen 9000  cdom 9001  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-card 10008
This theorem is referenced by:  opnvonmbllem2  46554  smfmullem4  46715
  Copyright terms: Public domain W3C validator