MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimact Structured version   Visualization version   GIF version

Theorem fimact 9960
Description: The image by a function of a countable set is countable. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
fimact ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ ω)

Proof of Theorem fimact
StepHypRef Expression
1 ctex 8527 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
2 imadomg 9959 . . . 4 (𝐴 ∈ V → (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴))
32imp 409 . . 3 ((𝐴 ∈ V ∧ Fun 𝐹) → (𝐹𝐴) ≼ 𝐴)
41, 3sylan 582 . 2 ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ 𝐴)
5 simpl 485 . 2 ((𝐴 ≼ ω ∧ Fun 𝐹) → 𝐴 ≼ ω)
6 domtr 8565 . 2 (((𝐹𝐴) ≼ 𝐴𝐴 ≼ ω) → (𝐹𝐴) ≼ ω)
74, 5, 6syl2anc 586 1 ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2113  Vcvv 3497   class class class wbr 5069  cima 5561  Fun wfun 6352  ωcom 7583  cdom 8510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-ac2 9888
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-card 9371  df-acn 9374  df-ac 9545
This theorem is referenced by:  smfpimbor1lem1  43080
  Copyright terms: Public domain W3C validator