MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimact Structured version   Visualization version   GIF version

Theorem fimact 10337
Description: The image by a function of a countable set is countable. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
fimact ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ ω)

Proof of Theorem fimact
StepHypRef Expression
1 ctex 8784 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
2 imadomg 10336 . . . 4 (𝐴 ∈ V → (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴))
32imp 408 . . 3 ((𝐴 ∈ V ∧ Fun 𝐹) → (𝐹𝐴) ≼ 𝐴)
41, 3sylan 581 . 2 ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ 𝐴)
5 simpl 484 . 2 ((𝐴 ≼ ω ∧ Fun 𝐹) → 𝐴 ≼ ω)
6 domtr 8828 . 2 (((𝐹𝐴) ≼ 𝐴𝐴 ≼ ω) → (𝐹𝐴) ≼ ω)
74, 5, 6syl2anc 585 1 ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  Vcvv 3437   class class class wbr 5081  cima 5603  Fun wfun 6452  ωcom 7744  cdom 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-ac2 10265
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-card 9741  df-acn 9744  df-ac 9918
This theorem is referenced by:  smfpimbor1lem1  44386
  Copyright terms: Public domain W3C validator