Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem1 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem1 47878
Description: Lemma 1 for isubgr3stgr 47887. (Contributed by AV, 16-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.f 𝐹 = (𝐻 ∪ {⟨𝑋, 𝑌⟩})
Assertion
Ref Expression
isubgr3stgrlem1 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}))

Proof of Theorem isubgr3stgrlem1
StepHypRef Expression
1 isubgr3stgr.u . . . . . 6 𝑈 = (𝐺 NeighbVtx 𝑋)
2 f1oeq2 6803 . . . . . 6 (𝑈 = (𝐺 NeighbVtx 𝑋) → (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅))
31, 2ax-mp 5 . . . . 5 (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
43biimpi 216 . . . 4 (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
543ad2ant1 1133 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
6 simpl 482 . . . . 5 ((𝑌𝑊𝑌𝑅) → 𝑌𝑊)
76anim2i 617 . . . 4 ((𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝑋𝑉𝑌𝑊))
873adant1 1130 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝑋𝑉𝑌𝑊))
9 nbgrnself2 29271 . . . 4 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
109a1i 11 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋))
11 simp3r 1202 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝑌𝑅)
12 isubgr3stgr.f . . . 4 𝐹 = (𝐻 ∪ {⟨𝑋, 𝑌⟩})
1312f1ounsn 7260 . . 3 ((𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅 ∧ (𝑋𝑉𝑌𝑊) ∧ (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ∧ 𝑌𝑅)) → 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌}))
145, 8, 10, 11, 13syl112anc 1375 . 2 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌}))
15 isubgr3stgr.c . . . 4 𝐶 = (𝐺 ClNeighbVtx 𝑋)
16 isubgr3stgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1716dfclnbgr4 47756 . . . . . 6 (𝑋𝑉 → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)))
18173ad2ant2 1134 . . . . 5 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)))
19 uncom 4131 . . . . 5 ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)) = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋})
2018, 19eqtrdi 2785 . . . 4 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐺 ClNeighbVtx 𝑋) = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋}))
2115, 20eqtrid 2781 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐶 = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋}))
2221f1oeq2d 6810 . 2 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}) ↔ 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌})))
2314, 22mpbird 257 1 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wnel 3035  cun 3922  {csn 4599  cop 4605  1-1-ontowf1o 6526  cfv 6527  (class class class)co 7399  Vtxcvtx 28907   NeighbVtx cnbgr 29243   ClNeighbVtx cclnbgr 47750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-nbgr 29244  df-clnbgr 47751
This theorem is referenced by:  isubgr3stgrlem3  47880
  Copyright terms: Public domain W3C validator