Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem1 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem1 47969
Description: Lemma 1 for isubgr3stgr 47978. (Contributed by AV, 16-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.f 𝐹 = (𝐻 ∪ {⟨𝑋, 𝑌⟩})
Assertion
Ref Expression
isubgr3stgrlem1 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}))

Proof of Theorem isubgr3stgrlem1
StepHypRef Expression
1 isubgr3stgr.u . . . . . 6 𝑈 = (𝐺 NeighbVtx 𝑋)
2 f1oeq2 6792 . . . . . 6 (𝑈 = (𝐺 NeighbVtx 𝑋) → (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅))
31, 2ax-mp 5 . . . . 5 (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
43biimpi 216 . . . 4 (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
543ad2ant1 1133 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
6 simpl 482 . . . . 5 ((𝑌𝑊𝑌𝑅) → 𝑌𝑊)
76anim2i 617 . . . 4 ((𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝑋𝑉𝑌𝑊))
873adant1 1130 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝑋𝑉𝑌𝑊))
9 nbgrnself2 29294 . . . 4 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
109a1i 11 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋))
11 simp3r 1203 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝑌𝑅)
12 isubgr3stgr.f . . . 4 𝐹 = (𝐻 ∪ {⟨𝑋, 𝑌⟩})
1312f1ounsn 7250 . . 3 ((𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅 ∧ (𝑋𝑉𝑌𝑊) ∧ (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ∧ 𝑌𝑅)) → 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌}))
145, 8, 10, 11, 13syl112anc 1376 . 2 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌}))
15 isubgr3stgr.c . . . 4 𝐶 = (𝐺 ClNeighbVtx 𝑋)
16 isubgr3stgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1716dfclnbgr4 47829 . . . . . 6 (𝑋𝑉 → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)))
18173ad2ant2 1134 . . . . 5 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)))
19 uncom 4124 . . . . 5 ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)) = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋})
2018, 19eqtrdi 2781 . . . 4 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐺 ClNeighbVtx 𝑋) = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋}))
2115, 20eqtrid 2777 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐶 = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋}))
2221f1oeq2d 6799 . 2 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}) ↔ 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌})))
2314, 22mpbird 257 1 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3030  cun 3915  {csn 4592  cop 4598  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Vtxcvtx 28930   NeighbVtx cnbgr 29266   ClNeighbVtx cclnbgr 47823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-nbgr 29267  df-clnbgr 47824
This theorem is referenced by:  isubgr3stgrlem3  47971
  Copyright terms: Public domain W3C validator