Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem1 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem1 48065
Description: Lemma 1 for isubgr3stgr 48074. (Contributed by AV, 16-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.f 𝐹 = (𝐻 ∪ {⟨𝑋, 𝑌⟩})
Assertion
Ref Expression
isubgr3stgrlem1 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}))

Proof of Theorem isubgr3stgrlem1
StepHypRef Expression
1 isubgr3stgr.u . . . . . 6 𝑈 = (𝐺 NeighbVtx 𝑋)
2 f1oeq2 6752 . . . . . 6 (𝑈 = (𝐺 NeighbVtx 𝑋) → (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅))
31, 2ax-mp 5 . . . . 5 (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
43biimpi 216 . . . 4 (𝐻:𝑈1-1-onto𝑅𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
543ad2ant1 1133 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅)
6 simpl 482 . . . . 5 ((𝑌𝑊𝑌𝑅) → 𝑌𝑊)
76anim2i 617 . . . 4 ((𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝑋𝑉𝑌𝑊))
873adant1 1130 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝑋𝑉𝑌𝑊))
9 nbgrnself2 29338 . . . 4 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
109a1i 11 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋))
11 simp3r 1203 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝑌𝑅)
12 isubgr3stgr.f . . . 4 𝐹 = (𝐻 ∪ {⟨𝑋, 𝑌⟩})
1312f1ounsn 7206 . . 3 ((𝐻:(𝐺 NeighbVtx 𝑋)–1-1-onto𝑅 ∧ (𝑋𝑉𝑌𝑊) ∧ (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ∧ 𝑌𝑅)) → 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌}))
145, 8, 10, 11, 13syl112anc 1376 . 2 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌}))
15 isubgr3stgr.c . . . 4 𝐶 = (𝐺 ClNeighbVtx 𝑋)
16 isubgr3stgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1716dfclnbgr4 47923 . . . . . 6 (𝑋𝑉 → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)))
18173ad2ant2 1134 . . . . 5 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)))
19 uncom 4105 . . . . 5 ({𝑋} ∪ (𝐺 NeighbVtx 𝑋)) = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋})
2018, 19eqtrdi 2782 . . . 4 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐺 ClNeighbVtx 𝑋) = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋}))
2115, 20eqtrid 2778 . . 3 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐶 = ((𝐺 NeighbVtx 𝑋) ∪ {𝑋}))
2221f1oeq2d 6759 . 2 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → (𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}) ↔ 𝐹:((𝐺 NeighbVtx 𝑋) ∪ {𝑋})–1-1-onto→(𝑅 ∪ {𝑌})))
2314, 22mpbird 257 1 ((𝐻:𝑈1-1-onto𝑅𝑋𝑉 ∧ (𝑌𝑊𝑌𝑅)) → 𝐹:𝐶1-1-onto→(𝑅 ∪ {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wnel 3032  cun 3895  {csn 4573  cop 4579  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28974   NeighbVtx cnbgr 29310   ClNeighbVtx cclnbgr 47917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-nbgr 29311  df-clnbgr 47918
This theorem is referenced by:  isubgr3stgrlem3  48067
  Copyright terms: Public domain W3C validator